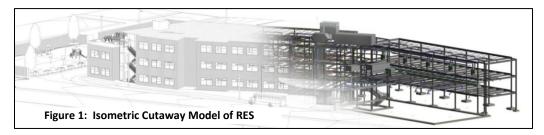


February 22, 2013

Table of Contents


SECTION 1: SUMMARY NARRATIVE	1
EXECUTIVE SUMMARY	1
PROJECT GOALS & INTRODUCTION	1
PRELIMINARY PROJECT PLANNING	
DESIGN	
SYSTEMS OVERVIEW	5
COST ANALYSIS	6
DELIVERY METHOD	6
SCHEDULE	7
TRANSITION PLAN	
LEED Points	
CODE ANAYLIS	
SECTION 2: SUPPORTING DOCUMENTATION	
Appendix A: WEATHER	
Appendix B: COST ESTIMATES	
Appendix C: Detailed Estimates	
Appendix D: LEED PLANS	
Appendix E: CODE ANALYSIS	
Appendix F: SCHEDULES	
Appendix G: REFERENCES & RESOURCES	
SECTION 3: DRAWINGS	
CM-100: Basement Layout	
CM-101: Floor Plans	
CM-102: Site Plan	
CM-201: Startup	
CM-202: Demolition	
CM-203: Excavation	
CM-204: Superstructure	
CM-205: Exterior Finish	
CM-206: Sitework	
CM-301: Integrated Sections	

SECTION 1: SUMMARY NARRATIVE

EXECUTIVE SUMMARY

The Construction Management report for AEI Team 10-2013, "Organic," begins by laying out the goals of the Charles Pankow Foundation Annual Architectural Engineering Student Design Competition. After establishing these goals, the body of the report explains how the team's design meets them through practices such as through reduced operation costs and providing an interactive learning environment for students at the Reading Elementary School (RES). Highlights of some of Organic's unique design elements include an idea for an indoor, centrally located pool to maximize usable site space for a safer parking lot location and a community playground. The project will utilize a design-build organizational structure with a guaranteed maximum price contract type, as it is the most innovative building solution and will be most cost-effective to the community of Reading by alleviating change orders during construction. To keep subcontractors on schedule during the construction process, milestone dates have been established that must be met. More details will be added to the schedule for specific construction processes when their date of execution draws closer, most notably application of SIPS for repetitive items such as façade and classroom construction. Also aiding in a successful construction sequence are detailed site utilization plans for each phase of the construction process and highly integrated 3D drawings to reduce clashes in the field. Organic believes that it is important to create a smooth turnover for building occupants, so a transition plan has been implemented to train staff, and feedback has been received from end-users to optimize design features. Also important to the design team was an extensive review of applicable building codes and standards to ensure that design met expectations of code officials. This is beneficial because it will cut down on design flaws that could slow construction, will speed up the permit process, and will ensure safety and satisfaction for the students and faculty of the RES.

PROJECT GOALS & INTRODUCTION

The goals of the Charles Pankow Foundation Annual Architectural Engineering Student Design Competition are clearly defined as the design and construction management of the engineered aspects of a high performance building. Integration and collaboration of the engineered systems is to be used **to improve the quality, efficiency, value and performance of the overall building, while pursuing new innovative solutions to realize these goals**. The design intent for RES was to create a learning space that would effective as an educational facility, as well as a valuable asset to the

CONSTRUCTION GOALS

- Design a cost-effective facility to help the entire community grow
- Plan for & adapt to issues of safety & quality throughout construction
- 3. Provide a safe & efficient environment for end users

Reading community. To attain these goals, the team set out specific construction objectives. For construction managers, it is often their responsibility to ensure that the project goals are met while

AEI Team 10-2013

considering the best interests of the owners and end users. By keeping the team's goals as high priorities, Organic will be able to not only meet, but exceed the goals of the Charles Pankow Foundation. *Like a living organism,* Organic's team has the ability to *grow & adapt* to the many challenges that arise over time.

PRELIMINARY PROJECT PLANNING

Table 1: BimEx Plan

PRIORITY	GOAL DESCRIPTION	BIM USES
HIGH	COLLABORATIVE DESIGN	WORKSHARING, CENTRAL MODELS
HIGH	4D MODEL	3DS MAX, NAVISWORKS
HIGH	MINIMIZE CLASHES	NAVISWORKS
HIGH	PROJECT DOCUMENTATION	REVIT
HIGH	PRESENTATION GRAPHICS	3DS MAX, NAVISWORKS
HIGH	QUANTITY TAKE-OFFS	REVIT
HIGH	COST ESTIMATING	REVIT
HIGH	ENERGY MODELING	REVIT
HIGH	FULLY INTEGRATED MODEL	GREEN BUILDING STUDIO, REVIT
MED	LIGHTING CALCS	ELUMTOOLS
LOW	RENDERINGS	3DS MAC, REVIT

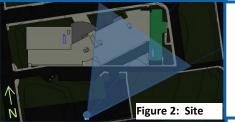
BIM Execution

Creating an early BIM Execution Plan is essential in having a successful project. For this reason it was one of the first things the team did. It is how the goals were determined, as well as what the building process would be. The team set out to have effective communication by utilizing texting, emailing, but most importantly, face-to-face communication at weekly meetings. Implementing BIM technology was also determined as can be seen in Table 1.

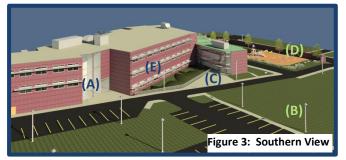
Having this table helped to organize the team's direction and highlight important computer applications. Each facet of the list played a part in achieving our team goals and creating a successful, integrated project, because these programs allowed us to work efficiently. They also allowed easy access for information because all files were saved to our centrally located folder that could be accessed by all parties from any computer on the network.

Environment Investigation

As a part of the first investigations into the project, the team wanted to learn more about the environment of the location of the future building. This is because a number of environmental factors can affect a team's process in the design and construction of a building. Reading is in southeastern Pennsylvania, and the city's website ranks it as the fifth most populated city in the state, with 88,082 residents. It has an average temperature range between 22 degrees Fahrenheit and 86 degrees Fahrenheit, and receives 45.32 inches of rain annually. According to the United States Geological Survey, it has some of the highest earthquake potential in the state, and the site has a high potential for sinkholes (Appendix A).


The city ranks among the highest in the state for both city violent crimes and city property crimes (11 per 1,000 residents and 52 per 1,000 residents respectively). Also, it is a relatively poor area, with 58% of students receiving free or reduced lunch.

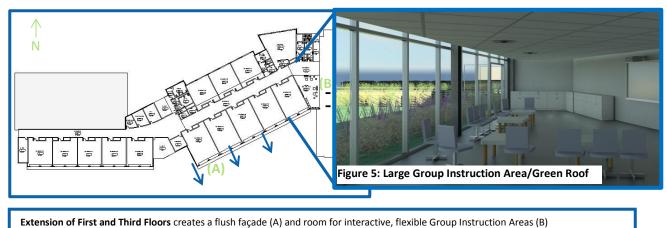
DESIGN


As stated in our introduction, our design process was driven by the goals that were agreed upon as a team. After doing our preliminary investigation, the team decided how our goals would overcome various site issues and shape both our designs and methods.

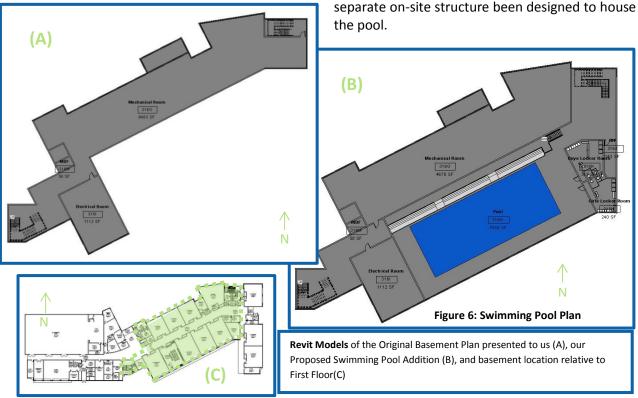
Because crime is a problem in Reading, the goal of *end user safety* was extremely important. As a result, our design will include many features to keep students and faculty out of harm's way, such as secure doors and site features, as can be seen in Figure 3. It is our hope that

our security design will not only be effective, but will also work in a passive manner that avoids too many overbearing features that may make people uncomfortable.

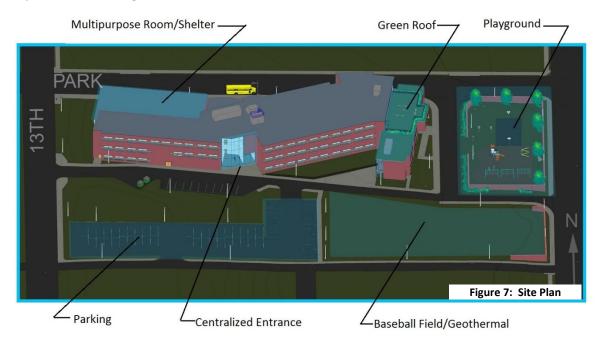
Southern View showing (A) Secure, Monitored Doors (B) Well-Lit Exterior (C) Safe Bus Pick-Up Drop-Off Zone (D) Architectural Playground Security Wall (E) Flush Exterior Façade Design Change


Our goal of creating a cost effective, energy efficient, and high quality design helped us to come up with our overall theme for school: *using the building as a learning tool*. Since Reading is a poor city, cost effective design is mandatory because additional costs will be hard to justify to a school board. In addition, *energy efficiency* will help save operation costs, and by exposing our energy efficient systems to students within the building, teachers can inform students about how the systems work. Learning about energy efficient buildings from an early age will hopefully help students understand the

benefits of green construction and energy conservation to one day practice it themselves and save money in their communities. This idea focuses on making the building not just a *place* for students to be, but rather an *environment* to learn in.


The team decided to make a few changes to the plans that was originally presented. The team created a flush façade on the southern exterior wall to improve constructability and make room for heat pump closets and group instruction areas. These group instruction areas are meant to be an interactive learning environment where teachers can bring students to learn about how the building is operating through various energy output monitors. Also, rather than have computers in all of the classrooms like on the drawings that were presented, it was decided that having a limited number of mobile laptops for students to share throughout classrooms, group instruction areas, or elsewhere in the school would be more cost-effective and flexible. In the third floor group instruction area, there will be access to the

green roof that can be used for LEED purposes, which will be discussed later. This green roof will not only act as a part of sustainable design, but will also act as a unique learning environment.



The changing of the southern façade wall also helped in making it possible to design a proposal for an add-alternate swimming pool addition in the basement of the school. The team decided that a swimming pool addition should go here for a number of reasons. First of all, it helps in turning the school into a truly *centralized community center* with various community spaces such as multipurpose room, swimming pool, and community room all within the same building in close proximity. Second, our design simply extends the footprint of the basement and does not create any additional exterior entrances to the school. *Limiting the number of entrances* for a possible intruder will help enhance the safety of those inside. Lastly, if the owner gives us the go-ahead to construct the pool where proposed, it will be in the optimum location for minimizing land usage. This is important in decreasing impermeable cover and achieving LEED credits that would otherwise be difficult to acquire had a

က

In addition to making a *greener site*, maximizing the finished land space will allow us to create a community playground for the school district. Our team plan on putting this at the eastern entrance of the school, moving the entrance from Park Street out to the East while putting all parking lot space for the school to the South. The existing school will be demolished and parking spaces will be placed there in addition to the ones that are there already. This idea utilizes the existing parking spaces for the new school as well as maximizes safety. Safety is enhanced by re-locating the parking for two reasons: First, it forces visitors to enter the school in the center near the administration area, and second, it minimizes the walking distance to the centrally located community spaces for after school functions when it could possibly be dark and dangerous outside.

More detailed design aspects include laterally braced structure to deal with potential seismic activity, a multi-hazard resistant shelter facility in the multipurpose room, geothermal heat pumps, and extensive use of daylighting. All of these features help us achieve our design goals and make the Reading Elementary School a safe place that can benefit the community.

SYSTEMS OVERVIEW

Table 2: Systems Overview

	Table 2. Systems Overview
Structural	Geopier foundation system; composite steel framing with hybrid masonry
	walls; multi-hazard resistant multipurpose shelter
Mechanical	Hybrid system utilizing ground coupled heat pumps to offset traditional
Mechanica	heating/cooling
Lighting	Daylight as a primary light souce combined with electric light to enhance
Lighting	overall aesthetics and energy efficiency while improving learning environment
Electrical	Organized power distribution to monitor building usage and provide a safe
Liecificai	and secure learning environment
Construction	Design build delivery method with a guaranteed maximum price; 16-month
COnstruction	construction duration
	Community pool included at basement level of proposed school; green roof
Architaatural	outdoor learning environment; security-assessed playground on east portion
Architectural	of project site; precast-panel façade system combined with exterior glazing for
	optimum daylighting efficiency
	· · · · · · · · · · · · · · · · · · ·

Table 3: Project Budget

COST ANALYSIS

Discovering that Reading is a low-income community further enhanced the belief that the design and construction strategy must be cost-effective. To determine a competitive square foot cost, the design team compiled data from various resources and found that an average elementary school cost was around \$237/SF (See Appendix B). In addition to overall building costs, D4 Estimating Software and R.S. Means Costworks provided us with costs for each division within the estimate. This data was used as a budget for the design, and we performed more detailed estimates for items when things became more finalized, such as for the pool, the playground, and selective demolition.

It should be known that, in order keep costs low, the construction team will take part in incentives to save money without sacrificing quality. This will be achieved through salvaging of materials during demolition and by employing programs such as a community

SF:	82,433	YEAR:	2013		
				% OF ORIG	
CATEGORY	DESCRIPTION	COST	COST/SF	CONTRACT	
A. Substructure	A10 Foundations	\$200,526.52	\$2.43	1.499	
	A20 Basement Const	\$792,473.48	\$9.61	5.879	
B. Shell	B10 Superstructure	\$2,098,250.00	\$25.45	15.549	
	B20 Exterior Enclosure	\$1,307,574.00	\$15.86	9.689	
	B30 Roofing	\$564,278.00	\$6.85	4.189	
C. Interiors	C10 Interior Const	\$1,436,344.00	\$17.42	10.649	
	C20 Stairs	\$287,268.80	\$3.48	2.139	
	C30 Interior Finishes	\$1,149,075.20	\$13.94	8.519	
D. Services	D10 Conveying	\$76,947.00	\$0.93	0.579	
	D20 Plumbing	\$705,347.50	\$8.56	5.229	
	D30 HVAC	\$2,039,095.50	\$24.74	15.109	
	D40 Fire Protection	\$294,963.50	\$3.58	2.189	
	D50 Electrical	\$1,577,413.50	\$19.14	11.689	
E. Equipment &					
Furnishings	E10 Equipment	\$259,696.13	\$3.15	1.929	
	E20 Furnishings	\$86,565.38	\$1.05	0.649	
F. Special					
Construction &					
Demolition	F10 Special Const	\$106,000.00	\$1.29	0.799	
	F20 Selective Building				
	Demolition	\$520,985.78	\$6.32	3.869	
Subtotal		\$13,502,804.29	\$163.80	100.009	
Time Adj. Factor		\$303,813.10	\$3.69	2.259	
Add-Alternate (Pool)		\$1,597,569.30	\$19.38	11.839	
General Conditions		\$1,340,743.00	\$16.26	9.939	
Taxes		\$810,168.26	\$9.83	6.009	
Fee		\$675,140.21	\$8.19	5.009	
Bonds & Insurance		\$337,570.11	\$4.10	2.509	
TOTAL		\$18,567,808.27	\$225.25		

"Build Day" for the playground. *Whole Building Design Guide*'s website says that organizing a successful "Build Day," in which community members erect the playground equipment, can cut costs by 30%. Not only will this save money, but it will also act as an excellent way to help bring the community of Reading together.

It is also worth noting that the pool design is to be proposed as an add-alternate to the contract sum. The construction team must know by May 1, 2013 whether the pool area will be pursued, as this is when excavation will be underway. Even if the pool itself will be too costly to build at the present date, it is recommended that the structure of the space be constructed anyway and used for some other purpose temporarily (perhaps as storage or a community fitness center) until funds become available, as it will be impossible to construct the current pool design once the building is completed. If the space is not constructed now, a future pool will have to be housed in an addition to the school footprint, and this will ultimately cost more money than the current design (See Appendix C).

DELIVERY METHOD

The construction delivery method is of upmost importance when deciding how to structure the project and how risk will be shared between the owner, contractors, and designers. Owner involvement, project schedule, cost, and risk are some of the most important aspects that influence project delivery selection. In the analysis of project delivery method for the Reading Elementary school, it was decided that a Design/Build delivery method with a Guaranteed Maximum Price would be most beneficial to the owner.

Design-Build delivery method with a Guaranteed Maximum price contract was found to be the most beneficial delivery method for this project. Organic recognizes that Pennsylvania's Department of

General Services currently adheres to The Separations Act but that it is currently under review by the state. Organic's team of designers, engineers, and construction managers believes that this project would benefit from a Design/Build project and has approached it as such. The school board desires a project team of construction managers partnered with designer engineers to create the most *innovative building solution*. By utilizing a Design/Build delivery, the construction managers are able to insert feedback on design decisions early on in the project and work with the designers to create the best possible solutions. By using a Guaranteed Maximum Price, Organic would be able to create a budget based on construction and deliver that construction for the maximum price or less. Savings below this budget would be split 50/50 between the owner and Organic.

The risk assumption of this delivery method allows the Design/Build team to minimize the owner's risk by consulting with the owner throughout the design and construction process. As the Design Builders, our team will create a budget based on the designed school and create work packages to be competitively bid out to subcontractors.

Using this delivery method allows us to further strive to meet our main goals of a cost-effective, energy efficient, high quality design as well as allows us to develop efficient planning and scheduling. By integrating the construction with design, our team is able to meet these goals throughout the entire building process.

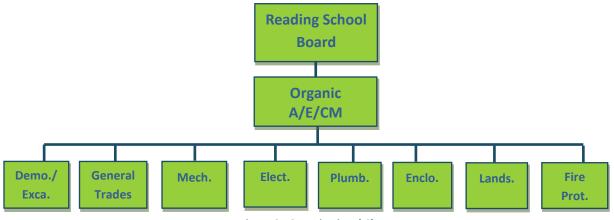


Figure 8: Organizational Chart

SCHEDULE

Milestones

Another major construction management task was determining the best schedule to meet or exceed the project goals. Our team began by determining a start and finish date based on months of school operation and placed important milestones in between. Some important milestones that must be achieved to maintain schedule include:

- Excavation April 8, 2013 We chose this as our beginning excavation date for a number of reasons. First, we can expect the ground to be thawed in this location by April which will make excavation much easier. Also, we plan on following excavation with our foundation work, which will entail possible drilling and placing concrete. By using this date, we can ensure that we will not be forced place concrete in freezing conditions or drill foundations in a few feet of snow.
- **Pool Go/No-Go Date May 1, 2013** The construction team must know by this date whether or not the proposed pool add-alternate will be pursued, as excavation will be

wrapping up shortly afterward. In addition to changing the foundation depth in the area, mechanical and electrical alterations will need to be made and need to be accounted for early.

- Structural Steel Topping Out July 1, 2013 Structural steel topping out was scheduled based on what work activities had to follow as well as our watertight schedule goal. We wanted to allow enough time for masonry construction as well as our precast panel erection to still meet the goal established.
- Watertight September 30, 2013 We selected this as the milestone date for when we expect the building structure to be watertight because we would be able to save a lot of money with temporary heat if we can have the building enclosed as well as store materials in the building to protect against harsh weather that falls after October.
- Substantial Completion June 2, 2014 It is important that we leave enough time to turn the building over and provide adequate training to facility managers who will need to learn how to work the various heating, cooling, lighting, and security systems of the building.
- School Year Begins August 25, 2014

Detailed Schedule

Knowing that the milestone deadlines had to be met helped in determining durations for specific schedule activities in between. This helped us create our more detailed construction schedule which has a start date of March 8, 2013 and a final occupancy date July 2, 2014 (See Appendix F).

Phases

Once the schedule was finalized, the various, "broad" phases that would bring the team from start to completion were determined:

1) Startup	5) Exterior Finish
2) Demolition	6) Interior Finish
3) Excavation	7) Sitework
4) Superstructure	8) Turnover

To further enhance the design and construction goals, our team determined unique issues of safety and quality for each phase of the construction. Next, specific plans to address these issues at each phase of the construction process were devised. Site plans for each phase were created to communicate the layout of the site and how space will be utilized during those times. The plans and write-ups can be seen below, and larger site plans can be found in Drawings 201-207.

STARTUP – Safety Concerns: Busy traffic to the North, school children to the South, & close sidewalk proximity. Quality Control: Isolating construction site to alleviate disturbance to the city. Overview: The startup phase is when things get mobilized and most of our general conditions items will be put in place, such as trailers, waste receptacles, and our *temporary site*

fencing to keep people, especially students off the site. Our plan is to make *a* gravel road that will allow vehicles to pass through the site from 13th street to 14th street. We did not want to put an entrance on Park Street because the program said that it was a very busy street, and we didn't want our vehicles to create traffic problems. Also we wanted to put gravel

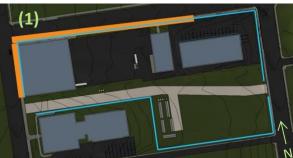


Figure 9: Startup Phase 3/8/13

SECTION 1: SUMMARY NARRATIVE [8 | 44]

down to help alleviate the amount of dirt that gets trailed off of the site and onto the city streets. In the northwest portion of the site, sidewalks are in very close proximity to construction, so we plan on utilizing *protected walkways*.

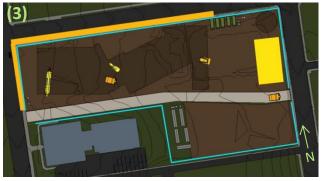

2. DEMOLITION – Safety Concerns: Falling debris, asbestos, lead paint, and children attending existing school. Quality **Control**: Efficient recycling and waste removal plan. **Overview:** We plan on two crews working having on demolition. One crew will be on the two smaller buildings to the east and one crew will work on the larger building to the west. According to the program, the two smaller buildings are slab on grade,

Figure 10: Demolition Phase 3/18/13

so they should be easier to get rid of. We realize that during demolition there will be a large opportunity to recycle materials, so we will have large recycling containers for each crew to recycle things like concrete, bricks, wood, etc. Workers handling materials in demolition will be required to wear protective equipment such as breathing masks to protect their lungs as well as gloves and other safety gear to protect their skin in case contaminants are found in the building materials. Since school will be in session during this phase and vehicles will be passing through the site, we plan to have heightened security and constant vigilance at the

 EXCAVATION – Safety Concerns: Open excavation pits, sinkholes, & contaminated soil. Quality Control: Sedimentation and erosion control. Overview: During excavation we will take measures to remediate the problem of the contaminated soil. Periodic testing of site soil will occur and any contaminated soil found will be removed and incinerated. Dump trucks will be on call to make deliveries of fill in the event that many

sinkholes are encountered and crews will be told to perform tool-box talks on excavation safety, specifically with sinkholes. When deep pits are encountered, holes will be flagged off around the edges so that people do not fall into them. Crews will work from west to east (downhill), and behind excavation crews, equipment will be brought in to construct geopiers for the foundation work. We will establish a *material storage and laydown area* and place tarps there to catch any soil that may run downhill during a rainstorm. We will also store any *topsoil* there that we plan on using later. Some of the recycling containers will remain on site to recycle whatever we can.

CONSTRUCTION [READING ELEMENTARY SCHOOL]

 SUPERSTRUCTURE – Safety Concerns: Crane swing & steel workers. Quality Control: Providing different areas for different crews to work in without congestion & keeping the site clean. Overview: We plan to erect the steel superstructure from floor to roof in three separate phases working west to east. The first phase will be the western most

portions and will consist mostly of the Figure 12: Superstructure Erection multipurpose room. One reason that we would like to have this done early is that we hope to use the large covered space as a protected laydown and storage area for materials. Protecting materials from rain is one way of protecting against mold and achieving IEQ LEED credits. Once everything there has been erected, the crane will back out and construct the middle piece of the building, which will be pretty much where the finished pool basement will be. Lastly we will construct the eastern portion of the building which is only two stories and has a green roof. While superstructure is being built, work will begin on the well field in the south of the site for geothermal heat pumps.

5. EXTERIOR FINISH – Safety Concerns: Site congestion and school children. Quality Control: Getting the building water-tight and protected before winter. Overview: Because the site is very narrow in spots, we feel that the best way to erect the precast Slenderwall façade will be with two smaller cranes working together. Smaller cranes will be more flexible in where they can go and will most likely be better off in dealing with the SIPS schedule that we plan on utilizing. For the




Figure 13: Exterior Finishing 7/1/13

multipurpose room, the wall assembly is different and scaffolding will have to be erected to finish the façade there. Also at this time, the bulk of MEP work will be happening inside the school, so demand for increased storage area may go up. One of the reasons the geothermal

field was started early was so that some, if not most of it could be used for extra material storage area during this busy phase of construction.

6. INTERIOR FINISH – Safety Concerns: School children & inclement winter weather. Quality Control: Keeping interior material finishes protected from the elements. Overview: During interior finish, site congestion will be dialed down and materials will be moved closer to the school for easier access.

Minor site cleanup will begin in preparation for site work on the playground in the east of the site and for the baseball field at the south of the site.

7. SITEWORK – Safety Concerns: Falling debris. Quality Control: Performing site construction without disturbing the relatively completed school and saving recyclable materials. Overview:

The biggest part of our sitework plan is to move the fences and walkways to the existing elementary school to begin demolition. Sitework surrounding the new school will start while school is in session and existing school demolition will begin once the school year has ended. This building will be demolished to create the parking lot for the new school. Parking lots were moved from the original plans to utilize some of the existing parking there and make

them more centrally located to the school.

It is important that construction of the playground to the east and demolition in the south will not damage any part of the nearly completed school. Crews will be told to recycle as many demolished materials as possible to gain LEED points.

8. TURNOVER- Safety Concerns: None. Quality Control: Testing and balancing of systems and training teachers and facility managers to properly use building systems. Overview: During turnover, teachers and facility mangers will be brought to the school for training to understand the building and its systems. End construction of the building has been planned to allow more than a sufficient amount of time for teachers to get their classrooms set up and learn about the layout of the school before the new school year will start there.

Figure 16: Turnover 7/2/14

Procurement Schedule

To cut down on the amount of time that materials are on site waiting to be installed, delivery dates for some of the major items, such as structural steel and façade panels were decided upon. The plan to get these things on site in a timely manner led to the development of a detailed procurement schedule. This schedule takes owner and architect approval into account as well as lead times for products, such as mill orders for steel, and provides due dates for when they must be ordered by to maintain a successful schedule. A detailed procurement schedule can be found in Appendix F.

Figure 15: Sitework 4/14/14

Short Interval Production Scheduling (SIPS)

Our team chose a precast panel façade system called Slenderwall for our building that will allow for

quick installation of the building enclosure and reduce the amount of material on site at a given time. Some characteristics of this system are:

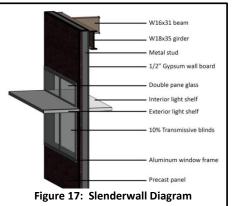
- Installation 19 minutes per panel
- Panel Size 8-feet by 30-feet (various sizes available)
- Panel Weight average approximately 7000 lbs. per panel dependent on size
- Safety reduce scaffolding, repetition
- Aesthetics variety of finishes

Another benefit of this system is that it includes interior metal

studs and insulation on the backs of the façade panels. Also, the repetitive nature of installation has allowed us to apply Short Interval Production Scheduling (SIPS) to further refine our schedule and enhance construction safety through design.

Because the school is comprised of many similar classrooms, our team plans on having contractors apply SIPS to enhance safety and efficiency in those areas of construction. Doing so will require effective communication and progress tracking throughout construction, which we plan on doing with 4D Scheduling and weekly update meetings.

TRANSITION PLAN


Some of our most important goals regarding the design and construction of the Reading Elementary school are a Cost-Effective, Energy Efficient, and High Quality Design along with *End User Safety and Satisfaction*. With these goals in mind, our construction management team came up with the idea to create a Transition Plan that would improve the transition from the existing elementary school to the new school. This Transition Plan will aid in moving into the new facility in a few key ways:

- 1. Teach facility managers to use and service new energy efficient equipment
- 2. Let teachers see and have input into the overall design of typical classrooms
- 3. Allow teachers to see potential safety concerns based on classroom designs

Getting teacher feedback is a very important aspect of this Transition Plan. It is somewhat of two-part process. In the beginning of the design process, pictures of our ideas along with the following questions were submitted to teachers in order gain insight into what teachers expect from a classroom:

- 1. What things do you like about your current classroom design?
- 2. What things would you change about your current classroom?
- 3. What types of teaching tools do you use most often? (PowerPoint, Chalkboard)
- 4. What types of technologies would you like in your classroom? (Laptops, TV's)

The feedback received helped us gain the perspective of the most important group in the entire building lifecycle: the end-user. Figure 15 presents the major findings of our feedback report. As an example, our team plans to implement these findings by utilizing maximum natural daylighting with light shelves as well as flat track electrical wiring under carpet to allow for multiple outlet configurations and flexibility. Executing BIM helps people visualize ideas and communicate them effectively to others.

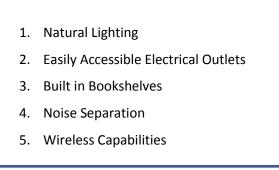


Figure 18: Classroom Image/Teacher Input

Another part of the Transition Plan deals with the facility management staff. As indicated in our milestone schedule, time has been allotted after substantial completion to train the facility staff that will be responsible for the general upkeep of the systems within the school. This will allow us to ensure that for the life of the building, the mechanical and electrical systems installed are properly maintained and therefor performing as designed. Organic also intends to use virtual mock-ups of the mechanical and electrical equipment rooms to review access and serviceability, all with the aim of creating *end-user satisfaction*.

LEED POINTS

The Reading School District has said that they would like the school to achieve LEED status, and together with the other disciplines on this project, the team believes that with the right planning, a LEED Silver Rating can be achieved.

Some credits are easy to get and some will be automatically attained based on our site location. Others, such as recycling materials, are based on percentages, but these numbers are attainable, especially during the demolition phase of construction. LEED stresses to maximize open space and vegetation and limit impermeable cover. This was one of the reasons our team didn't want to house the pool in a separate building on site, and is also the reason why installing a green roof on the eastern part of the building is beneficial. Other specific LEED approaches relatable to Construction Management can be found in Appendix D.

One of the most important LEED credits to us is the "School as a teaching Tool" credit. This is not only an opportunity for LEED points, but is also part of the driving force behind our design. As stated earlier, our design team plans on making the MEP and structural systems exposed architectural features of the school that

will act as a unique teaching tool that instructors can use to explain how buildings work and teach children from a young age about energy conservation. Exposed items will be color coordinated to indicate different components of the building such as hot and cold water pipes, return ducts, and other things so that they are easily distinguishable. For additional LEED information, see Appendix D.

Table 4: LEED Summary

RES LEED SUMMARY	LEED CREDITS
Sustainable Sites (SS)	18
Water Efficiency (WE)	6
Energy & Atmosphere (EA)	15
Materials & Resources (MR)	4
Indoor Environmental Quality (IEQ)	13
Innovation in Design (ID)	2
Regional Priority (RP)	0
Total LEED Credits	58
LEED 2009 for Schools New Construct Major Renovations certifications are according to the following scale:	
Certified	40-49
Silver	50-59
Gold	60-79
Platinum	80+

AEI Team 10-2013

CODE ANAYLIS

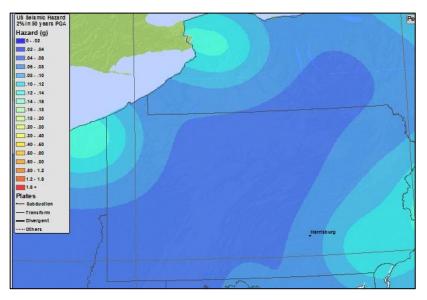
One of the most important things to consider when designing a building is the established building codes for the area. An innovative, cost-effective, and exciting idea is nothing without meeting code requirements, because without meeting code, a building will be potentially unsafe and remain what it is: simply an idea.

In the case of our proposed design and construction of the Reading Elementary School, our team followed the codes of *International Building Code 2009*, which according to "reedconstructiondata.com" is the building/dwelling code for Reading, Pennsylvania. Also studied in our code analysis was "pacode.com," which according to their website is an "official publication of the Commonwealth of Pennsylvania that contains regulations and other documents." Specifically referenced is Chapter 349, which is titled *School Building Standards* and contains, among other things, a list of codes that should be followed in PA school construction.

Our design for the Reading Elementary School will be Type IB Construction and have two different zones for use. The majority of the building will be Group E, Educational, but if the swimming pool addition is pursued, it will have to be Group A-4 and be separated from the mechanical area in the basement. The multipurpose room on the first floor does not count as an assembly space because it is attached to an educational facility. With these designations, square footage is unlimited and height limitations will not be an issue.

In terms of fire protection, a sprinkler system is definitely needed for the basement. For the other floors, the possibility of creating firewalls to alleviate the need for sprinkler was explored, but, in the end using a sprinkler system rather using spray fireproofing on the exposed structural elements throughout our school design was best.

A lot of time was spent ensuring that the design for the possible swimming pool addition was up to code. Two different exit routes were sized and a seating capacity of 120 spectators, a pool capacity of 54 people, and a pool deck capacity of 180 people were determined. ADA requirements were also taken into consideration. For this reason, the elevator from the first floor of the school allows access to the top bleacher level, and a wheelchair lift at the end of our seating area will allow those in wheelchairs to reach the pool deck. For egress purposes, an area of refuge for those in wheel chairs will be provided at both stairwells. For additional code information, see Appendix E.



SECTION 1: SUMMARY NARRATIVE [14 | 44]

SECTION 2: SUPPORTING DOCUMENTATION

Appendix A: WEATHER

All weather data was taken from weather.com and seismic information is courtesy of the U.S. Geological Survey's website

Appendix B: COST ESTIMATES

D4 Cost Estimating Software and R.S. Means CostWorks was used to create the following estimates:

	Square Foot Cost Estimate Report				
Estimate Name:	Reading Elementary				
Building Type:	School, Jr High, 2-3 Story with Face Brick with Concrete Block Back-up / Steel Frame				
Location:	READING, PA		1477 By	Star the	1 2
Story Count:	3	An	2 Cash	s sharting	HIGH
Story Height (L.F.):	15	Salara	- ALLER	anne ar an all a	TIME A
Floor Area (S.F.):	82433	AN GR	A PARTY A	The state	TETAL PA
Labor Type:	Union	-			Lanza
Basement Included:	Yes				
Data Release:	Year 2012	Costs are derived	d from a building r	nodel with basic comp-	onents.
Cost Per Square Foot:	\$208.07	Scope difference	s and market cons	itions can cause costs	to vary significantly
Building Cost:	647 452 500				
bunuing cost:	\$17,152,500				
bunung cost	\$17,152,500				
bunung cost.	\$17,152,500		% of Total	Cost Per S.F.	Cost
	\$17,152,500		% of Total 7.70%		Cost \$993,00
A Substructure	\$17,132,500			\$12.05	\$993,00
A Substructure B Shell	\$17,152,500		7.70%	\$12.05 \$64.76	\$993,00 \$5,338,00
A Substructure B Shell C Interiors	21/124200		7.70% 41.60%	\$12.05 \$64.76 \$28.57	\$993,00 \$5,338,00 \$2,355,50
A Substructure B Shell C Interiors D Services E Equipment & Furnis			7.70% 41.60% 18.40%	\$12.05 \$64.76 \$28.57 \$47.06	\$993,00 \$5,338,00 \$2,355,50 \$3,879,50
A Substructure B Shell C Interiors D Services			7.70% 41.60% 18.40% 30.30%	\$12.05 \$64.76 \$28.57 \$47.06 \$3.14	\$993,00 \$5,338,00 \$2,355,50 \$3,879,50 \$258,50
A Substructure 8 Shell C Interiors D Services E Equipment & Furnis SubTotal			7.70% 41.60% 18.40% 30.30% 2.00%	\$12.05 \$64.76 \$28.57 \$47.06 \$3.14 \$155.57	\$993,00 \$5,338,00 \$2,355,50 \$3,879,50 \$258,50 \$12,824,50
A Substructure 8 Shell C Interiors D Services E Equipment & Furnis SubTotal	hings		7.70% 41.60% 18.40% 30.30% 2.00%	\$12.05 \$64.76 \$28.57 \$47.06 \$3.14 \$155.57 \$38.89	\$993,00 \$5,338,00 \$2,355,50 \$3,879,50 \$258,50 \$12,824,50 \$3,206,00
A Substructure B Shell C Interiors D Services E Equipment & Furnis SubTotal Contractor Fees (Gene	hings		7.70% 41.60% 18.40% 30.30% 2.00% 100% 25.00%	\$12.05 \$64.76 \$28.57 \$47.06 \$3.14 \$155.57 \$38.89 \$13.61	\$993,00 \$5,338,00 \$2,355,50 \$3,879,50 \$258,50

Code	Division Name	%	Sq. Cost	Projected
03	Concrete	18.96	39.96	3,294,213
	Concrete	16.96	35.75	2,946,778
	Precast Plank	2.00	4.21	347,435
05	Metals	7.36	15.52	1,279,211
	Steel Supply	5.20	10.97	903,958
	Steel Erection	2.16	4.55	375,253
06	Wood & Plastics	5.54	11.69	963,360
	Carpentry	4.63	9.76	804,829
	Architectural Woodwork	0.91	1.92	158,531
07	Thermal & Moisture Protection	4.50	9.50	782,718
	Joint Sealers	0.15	0.32	26,744
	Roofing & Flashing	4.35	9.17	755,974
08	Doors & Windows	6.73	14.19	1,169,963
	Coiling & Overhead Doors	0.11	0.22	18,466
	Doors Frames Hardware	1.50	3.16	260,760
	Aluminum Windows	4.30	9.06	746,886
	Aluminum Entrances	0.83	1.75	143,850
09	Finishes	15.32	32.29	2,661,426
	Acoustical Treatment	1.25	2.64	217,657
	Tile & Stone	2.49	5.24	432,331
	Painting	0.87	1.84	151,845
	Wood Flooring	0.35	0.73	60,226
	Drywall Plaster	9.05	19.07	1,572,175
	Carpet Resinous Flooring	1.31	2.76	227,192
10	Specialties	1.16	2.45	201,758
	Lockers	0.51	1.07	88,399
	Folding Partitions	0.31	0.66	54,095
	Display Boards	0.34	0.72	59,264
11	Equipment	2.13	4.49	370,130
	Athletic	0.20	0.41	33,997
	Food Service	1.93	4.08	336,133
12	Furnishings Casework	1.18	2.48	204,438 204,438
14	Conveying Systems Elevators	0.42	0.88	72,465
15	Mechanical	25.49	53.73	4,428,735
	Plumbing HVAC	11.03	23.24	1,916,137
	Fire Protection	1.07	2.26	186,682
	Ventilation/Controls	13.39	28.22	2,325,916
16	Electrical	11.21	23.63	1,947,657
	Electrical	11.21	23.63	1,947,657
	Total Building Costs	100.00	210.79	17,376,074

SF:	82,433	YEAR:	YEAR: 2013			
CATEGORY	DESCRIPTION	COST	COST/SF	% OF ORIG. CONTRACT		
A. Substructure	A10 Foundations	\$200,526.52				
Albubblidetuic	A20 Basement Const	\$792,473.48	-			
B. Shell	B10 Superstructure	\$2,098,250.00				
	B20 Exterior Enclosure	\$1,307,574.00				
	B30 Roofing	\$564,278.00				
C. Interiors	C10 Interior Const	\$1,436,344.00				
	C20 Stairs	\$287,268.80				
	C30 Interior Finishes	\$1,149,075.20				
D. Services	D10 Conveying	\$76,947.00				
	D20 Plumbing	\$705,347.50	\$8.56	5.22%		
	D30 HVAC	\$2,039,095.50	\$24.74	15.10%		
	D40 Fire Protection	\$294,963.50	\$3.58	2.18%		
	D50 Electrical	\$1,577,413.50	\$19.14	11.68%		
E. Equipment &						
Furnishings	E10 Equipment	\$259,696.13	\$3.15	1.92%		
	E20 Furnishings	\$86,565.38	\$1.05	0.64%		
F. Special Construction &						
Demolition	F10 Special Const	\$106,000.00	\$1.29	0.79%		
	F20 Selective Building					
	Demolition	\$520,985.78				
Subtotal		\$13,502,804.29	\$163.80	100.00%		
Time Adj. Factor		\$303,813.10	\$3.69	2.25%		
Add-Alternate (Pool)		\$1,597,569.30	\$19.38	11.83%		
General Conditions		\$1,340,743.00	\$16.26	9.93%		
Taxes		\$810,168.26	\$9.83	6.00%		
Fee		\$675,140.21	\$8.19	5.00%		
Bonds & Insurance		\$337,570.11	\$4.10	2.50%		
TOTAL		\$18,567,808.27	\$225.25			

The following was taken from School Planning & Management Magazine, which is a publication of Peter Li Education Group:

REGION 2 N How Much Is Being						3
	New Schools	Additions	Renovations	Total	5	
Completions in 2010	\$513,348	\$392,482	\$588,861	\$1,494,691		~
Completions in 2011	\$551,985	\$293,335	\$449,218	\$1,294,538	-	Nº
Starting in 2011	\$517,620	\$318,016	\$478,487	\$1,314,123		>1
Total Activity	\$1,582,953	\$1,003,833	\$1,516,566	\$4,103,352		-
% of Total	38.6%	24.5%	37.0%			•
Where Is the Money	Going?					
	Total (\$000s)	Elementary	Middle	High	District	
Completions in 2010	\$1,494,691	34.3%	18.9%	45.8%	1.0%	
Completions in 2011	\$1,294,538	50.5%	7.8%	39.6%	2.1%	
Starting in 2011	\$1,314,123	43.4%	10.5%	44.7%	1.4%	
Total Activity	\$4,103,352	42.3%	12.7%	43.5%	1.5%	
New Schools Only						
	Cost/ Sg. Ft.	Cost/ Student	Sq. Ft./ Student	Median Cost (\$000s)	Median # Students	Median Siz (Sq. Ft
Elementary	\$309.52	\$38,571	138.5	\$26,000,000	673	90,00
Liementary						
Middle/JHS	\$250.00	\$40,000	173.3	\$24,000,000	600	104,00

5 PROFILE OF NEW SCHOOLS CURRENTLY UNDERWAY

National Medians	\$/Sq. Ft.	\$/Per Student	Sq. Ft.∕ Per Student	No. of Students	Building Size (Sq. Ft.)	Building Cost (\$000's)
Elementary Schools	\$190.48	\$25,500	125.0	600	75,000	\$14,800
Middle School	\$215.14	\$29,959	149.0	936	140,000	\$30,000
High Schools	\$188.68	\$30,833	156.3	1,600	260,000	\$54,900
Low Quartile	\$/Sq. Ft.	\$/Per Student	Sq. Ft.∕ Per Student	No. of Students	Building Size (Sq. Ft.)	Building Cost (\$000's)
Elementary Schools	\$156.72	\$18,962	106.7	500	64,000	\$11,600
Middle School	\$172.41	\$23,774	124.0	750	101,000	\$21,000
High Schools	\$164.46	\$25,769	125.0	1,200	150,000	\$32,000
High Quartile	\$/Sq. Ft.	\$/Per Student	Sq. Ft.∕ Per Student	No. of Students	Building Size (Sq. Ft.)	Building Cost (\$000's)
Elementary Schools	\$268.24	\$36,667	140.0	800	95,000	\$22,755
Middle School	\$248.65	\$36,667	162.2	1,200	170,000	\$41,000
High Schools	\$252.50	\$42,037	187.5	2,064	342,000	\$75,534

	COMPARABLE BUILDING COST ESTIMATES									
Data	Year	Location	S.F.	Price	Per S.F.	Location Factor	Time Factor	Adjusted S.F. Cost		
D4 Estimate	2013	Reading, PA	82,433	\$17,376,074	\$210.79	1.00	1.00	\$210.79		
R.S. Means Costworks	2012	Reading, PA	82,433	\$17,152,500	\$208.08	1.00	1.02	\$212.24		
Clearview Elementary		Hanover, PA								
School	2002	(Near York)	43,638	\$6,887,822	\$157.84	1.03	1.56	\$253.62		
School Planning &										
Management	2011	National	75,000	\$14,800,000	\$197.33	0.99	1.06	\$207.08		
School Planning &										
Management	2011	PA,NJ,NY	90,000	\$26,000,000	\$288.89	0.99	1.06	\$303.16		
				-			AVG	\$237.38		

Appendix C: DETAILED ESTIMATES

	St	affing Plan			
Title	Involvemen Construe	CONTRACTOR OF THE	-Cost/Unit		Total Cost
	Percent of Time	Weeks	cost/onit	Unit	Total Cost
Project Manager	100%	64	3350	wks	\$214,400.00
Superintendent	100%	64	3100	wks	\$198,400.00
Project Engineer	100%	64	2825	wks	\$180,800.00
Safety Manager	80%	51	2825	wks	\$144,640.00
Quality Control Manager	80%	51	2825	wks	\$144,640.00
Field Engineer	90%	58	2050	wks	\$118,080.00
Office Engineer	75%	48	2050	wks	\$98,400.00
Secretary	100%	64	775	wks	\$49,600.00
• • •	8 3	2	8. R.		\$1.148.960.00

Total General Cor	nditions
Total General Co	nditions
Staffing	\$1,148,960.00
Site Costs	\$191,783.00
Total General Conditions	\$1,340,743.00

				dation Estimat	
			Excavatio	n and Replace	ement
Quantity		Units	Cost/unit	Total Cost	Notes
	30000	CY	\$3.09	\$92,700.00	Excavate
	37500	LCY	\$2.12	\$79,500.00	Backfill
	30000	BCY	\$16.00		
	37500	LCY	\$3.82	\$143,250.00	Compact
	109.61	BCY	\$19.97	\$2,188.91	Excavate for footings-1 CY Bucket
	109.61	CY	\$73.92	\$8,102.37	3000 PSI concrete - Material
	109.61	CY	\$22.56	\$2,472.80	3000 PSI concrete - Labor
	2.581	Ton	\$2,283.00	\$5,892.42	#5 bar reinforcing - Material and Labor
				\$334,106.51	histor
				Micropiles	
Quantity		Units	Cost/unit	Total Cost	Notes
	1	EA	\$15,000.00	\$15,000.00	Equipment Mobilization
	7312.5	V.L.F	\$27.06	\$197,876.25	Driven Steel Piles - Concrete filled
	843.75	CY	\$30.09	\$25,388.44	Concrete Pile Caps-Labor
	843.75	CY	\$73.92	\$62,370.00	Concrete Pile Caps-Material (3000 psi)
	2.581	Ton	\$2,283.00	\$5,892.42	Concrete Pile Caps-Steel Reinforcing
				\$306,527.11	
				GeoPiers	
Quantity		Units	Cost/unit	Total Cost	Description
	2	EA	\$15,000.00	\$30,000.00	Equipment Mobilization
5 1	830	BCY	\$1.79	\$1,485.70	Loading Soil to Trucks
	1037	LCY'	\$14.40	\$14,932.80	
0 2	2470	LF	\$55.21	\$136,368.70	Price of all except hauling excavation
	996.00	LCY	\$20.00	\$19,920.00	Hauling
	63.782	CY	\$73.92	\$4,714.77	Footing Concrete - 3000 psi - Material
	63.782	CY	\$22.56	\$1,438.92	Footing Concrete - 3000 psi - Labor
6 2	1.4399	Ton	\$2,283.00	\$3,287.29	Footing Reinforcing (#5 bar) Material and Labo
				\$212,148.18	

	General Sit	e Conditio	ons								
	Tempora	ry Fencin	g								
Item	Cost/Unit			Total Cost							
6ft Fence	\$7.00	LF	1790	\$12,530.00							
Trash Services											
Item	Cost/Unit	Unit	Quantity	Total Cost							
Recycling Dumpsters	\$986.70	Each	10	\$9,867.00							
	\$10.00	Day	400	\$4,000.00							
Trash Dumpsters	\$500.00	Each	8	\$4,000.00							
	\$5.00	Day	400	\$2,000.00							
				\$19,867.00							
	Porta	Potty									
Item	Cost/Unit	Unit	Quantity	Total Cost							
Porta Potty	\$100	Month	96	\$9,600.00							
Delivery	\$50	Month	96	\$4,800.00							
				\$14,400.00							
T	emporary F	ire Prote	ction	v = 1,122.22							
Item	Cost/Unit		1	Total Cost							
Fire Extinguishers	\$70.00		15	\$1,050.00							
		railer									
Item	Cost/Unit	· · · · · · · · · · · · · · · · · · ·	Quantity	Total Cost							
Large Trailer	\$375.00		32	\$12,000.00							
Small Trailer	\$209.00	Month	48	\$10,032.00							
Delivery			-	\$800.00							
		2		\$22,832.00							
	Tempora	ry Utilitie	s								
Item	Cost/Unit		T	Total Cost							
Job Lighting		CSF FIr	830	\$9,960.00							
Temporary Power		CSF FIr	830	\$49,800.00							
Temporary Water	\$62.00	Month	16	\$992.00							
				\$60,752.00							
	Office E	quipmen	t								
Item	Cost/Unit	Unit	Quantity	Total Cost							
Supplies	\$265.00	Month	16	\$4,240.00							
HVAC & Lighting	\$167.00	Month	16	\$2,672.00							
Telephone & Data	\$100.00		16	\$1,600.00							
				\$8,512.00							
	Site S	ecurity									
Item	Cost/Unit		Quantity	Total Cost							
Security Officer	\$27.00	hr	1920	\$51,840.00							
2				0							
		TOTAL	SITE COSTS	\$191,783.00							

	DEMOLITI	ON ESTIMA	TE	
Item	Unit	Qty	Cost/Unit	Cost
Building 1	C.F.	281250	\$0.50	\$140,625.00
Building 2	C.F.	41360	\$0.50	\$20,680.00
Building 3	C.F.	96000	\$0.50	\$48,000.00
Existing Elementary School	C.F.	415590	\$0.49	\$203,639.10
Pavement	S.Y.	5769	\$9.20	\$53,074.80
Concrete	S.F.	2000	\$22.00	\$44,000.00
Concrete Curbs	L.F.	184	\$6.65	\$1,223.60
Chain Link Fence	L.F.	1229	\$4.12	\$5,063.48
Natural Gas Pipe	L.F.	47	\$8.20	\$385.40
Natural Gas Fittings	EACH	3	\$18.50	\$55.50
Water Pipes	L.F.	73	\$15.30	\$1,116.90
Water Fittings	EACH	4	\$128.00	\$512.00
Oil Tank	EACH	1	\$1,200.00	\$1,200.00
Misc. Material Hauling	с.ү.	75	\$18.80	\$1,410.00
	L		TOTAL:	\$520,985.78

Façade Estimate										
Location	Façade Area (SF)	Cost/SF (Low)	Cost/SF (High)	Total Cost (Low)	Total Cost (High)					
North	13791.35	\$25.00	\$40.00	\$344,783.75	\$551,654.00					
South	11389.58	\$25.00	\$40.00	\$284,739.50	\$455,583.20					
East	3821.54	\$25.00	\$40.00	\$95,538.50	\$152,861.60					
West	3686.88	\$25.00	\$40.00	\$92,172.00	\$147,475.20					
				\$817,233.75	\$1,307,574.00					

AEI Team 10-2013

CONSTRUCTION [READING ELEMENTARY SCHOOL]

STRUCT	URAL POO	L TAKEC	FFS		Total
FOUNDATION					
G	eneral Exca	vation			
Item	Quantity	Unit	Waste	Cost/Unit	
Soil Removal, Excavator	4955	BCY	1.00	1.79	8869.45
Soil Hauling, 12CY Truck	6442	LCY	1.10	14.4	102041.28
	Footing	ļs			
Item	Quantity	Unit	Waste	Cost/Unit	
Strip Footings	1197	LF	1.10	38.5	50692.95
Spread Footing Excavation	100	BCY	1.00	1.79	179.00
Spread Footing Concrete	100	CY	1.10	107	11770.00
Spread Footing Rebar	2.8	TONS	1.10	2,283	7031.64
	Slab-On-G	rade			
Item	Quantity	Unit	Waste	Cost/Unit	
6" Reinforced Slab	7864	SF	1.10	5.44	47058.18
LOAD BEARING WALLS					
	CMU Wa	lls			
Item	Quantity	Unit	Waste	Cost/Unit	
8" CMU's Grouted Solid	4600	SF	1.10	11.08	56064.80
ST ST	RUCTURAL	STEEL			
Item	Quantity	Unit	Waste	Cost/Unit	
36" Deep Joist	8.856	TON	1.00	3450	30553.20
W36x182	11.193	TON	1.00	3450	38615.8
5 	1	1	1	1	\$352,876.35

ELECTRIC	AL POOL	TAKEOF			Total
	OUTLETS				
Item	Quantity	Unit	Waste	Cost/Unit	
4 per 1000 SF w/ Transformer	7854	SF	1.10	2.3	19870.62
LIGHTING			1947 - 19		
	Pool Area	1			
Item	Quantity	Unit	Waste	Cost/Unit	
High Bay, HID Fixture w/4 Watts per SF	5876	SF	1.00	10.56	62050.56
T12 40 Watt Lamps	1107	SF	1.00	10.24	11335.68
Underwater Pool Lights	2	EACH	1.00	945	1890
l. I	ocker Roo	ms			
Item	Quantity	Unit	Waste	Cost/Unit	
T12 40 Watt Lamps	814	SF	1.00	10.24	8335.36
	MISC				
Item	Quantity	Unit	Waste	Cost/Unit	
Clock/Scoreboard	1	EACH	1.00	3450	3450
Communication System w/ Wiring, Conduits	1	EACH	1.00	13675	13675
	10	8	3 3		\$120,607.22

ARCHITECTURAL POOL TAKEOFFS

MECHANICAL POOL TAKEOFFS								
VENTILAT	ION							
Item	Quantity	Unit	Waste	Cost/Unit				
Centrifugal Ventilation System	1	EACH	1	10,250	10250.00			
AIR CONDITI	ONING							
Item	Quantity	Unit	Waste	Cost/Unit				
Rooftop Single Zone Cooling, School	7864	SF	1	11.4	89649.60			
Hydronic Electric Boiler	7864	SF	1	7.19	56542.16			
MISC								
Item	Quantity	Unit	Waste	Cost/Unit				
Gas Pool Heater	1	EACH	1	16,900	16900.00			
	¢:	8: 	2: 		\$173,341.76			

Gas POUL Heater		TEACH	1	10,500	10900.00				
	2: 	82. 	2	2	\$173,341.76				
	the second second second		44 4		Tana and				
PLUMBING F	Total								
FIXTURES									
tem	Quantity	Unit	Waste	Cost/Unit					
lack to Back Water Closet Pairs	2	EACH	1	4550.00	9,100.00				
Vall Hung Water Closet	1	EACH	1	2290.00	2,290.00				
Vall Hung Urinal	1	EACH	1	1425.00	1,425.00				
Vall Hung Sinks	4	EACH	1	1755.00	7,020.00				
Prinking Fountains, Semi-Recessed	2	EACH	1	1870.00	3,740.00				
hower System 30" Square	6	EACH	1	2600.00	15,600.00				
howher Head, Arm, and Handles	6	EACH	1	431.00	2,586.00				
PI	PING								
tem	Quantity	Unit	Waste	Cost/Unit	8				
lotwater, 2" Copper	300	LF	1.1	52.80	17,424.00				
oldwater, 2" Copper	300	LF	1.1	52.80	17,424.00				
Vaste Pipe, 4" PVC	200	LF	1.1	34.65	7,623.00				
٨	AISC								
tem	Quantity	Unit	Waste	Cost/Unit	-				
prinkler System, Light Hazaard, Floor	7864	SF	1	3.51	27,602.64				
as Fired Water Heater	1	EACH	1	6775.00	6,775.00				
	š – .		- (†		\$118,609.64				

INTERIO	R PARTITIC	DNS			
Item	Quantity	Unit	Waste	Cost/Unit	
8" CMU'S	1460	SF	1.10	9.63	15,465.78
Toilet Partitions Laminate Standar	d 3	EACH	1.00	693.00	2,079.00
Toilet Partitions Laminate ADA	2	EACH	1.00	1038.00	2,076.00
3' Hollow Metal Doors	4	EACH	1.00	1212.00	4,848.00
	STAIRS				
Item	Quantity	Unit	Waste	Cost/Unit	
Standard Stairway, 1 Flight	2	EACH	1.10	11300.00	24,860.00
Bleacher Stairway, 6 Risers	1	EACH	1.00	5000.00	5,000.0
R	AILINGS				
Item	Quantity	Unit	Waste	Cost/Unit	
Steel Railings	200	LF	1.00	80.00	16,000.00
S	EATING				
Locker Room Benches	6	EACH	1.00	180.00	1,080.00
Bleacher Seating, 3 Rows	120	LF	1.00	55.50	6,660.0
FI	NISHES				
Lock	er Rooms				
Item	Quantity	Unit	Waste	Cost/Unit	
Quarry Tile Floor	671	SF	1.10	14.15	10,444.1
Vinyl Composition Tile	448	SF	1.10	2.02	995.4
Painted CMU Walls	1460	SF	1.10	1.79	2,874.7
1/2" Gyp Board Ceiling Painted	814	SF	1.10	4.32	3,868.1
Mirrors	4	EACH	1.00	232.50	930.0
Surface Mounted Towels	2	EACH	1.00	83.50	167.0
Toilet Tissue Dispenser	5	EACH	1.00	38.05	190.2
Mair	Pool Area	4			
Item	Quantity	Unit	Waste	Cost/Unit	
1/2" Granolithic Concrete Floor	6700	SF	1.10	4.81	35,449.7
Painted CMU Walls	1430	SF	1.10	1.79	2,815.6
Spray Painted Structure	5943		1.10	0.51	3,334.0
1/2" Gyp Board Ceiling Painted	1107	SF	1.10	4.32	5,260.4
	MISC				
Steel Lockers 5' High		EACH	1.00	217.00	2,604.0
Wheelchair Lift*	1	EACH	1.00	4459.00	4,459.0
Pool w/ Gunite Shell, Formed				0	
Gutters, and Tile Finish	2706	SF	1.00	250.50	677,853.0
Pool Filter System w/ Pump	1	EACH	1.00	2820.00	2,820.00
*usmedic	alcunnling	com			\$832,134.3

FU1	CURRENT ADD-ALTERNATE DESIGN					
Item	Unit	Qty.	Cost/Unit	Cost	Item	Cost
Facebrick Building					Structure	
w/ CMU backup	S.F.	9,000	\$265.07	\$2,385,630.00		\$352,876.35
Bleachers	L.F.	120	\$55.50	\$6,660.00	Mechanical	\$173,341.76
Lockers	EACH	12	\$217.00	\$2,604.00	Electrical	\$120,607.22
Benches	EACH	6	\$180.00	\$1,080.00	Plumbing	\$118,609.64
Sound System	EACH	1	\$13,675.00	\$13,675.00	Architectural	\$832,134.33
Pool Lights	EACH	2	\$945.00	\$1,890.00		
Scoreboard	EACH	1	\$3,450.00	\$3,450.00		
			TOTAL:	\$2,414,989.00	TOTAL:	\$1,597,569.30

AEI Team 10-2013

SECTION 2: SUPPORTING DOCUMENTATION [19 | 44]

CONSTRUCTION [READING ELEMENTARY SCHOOL]

			Roof					20	d Floor		
Beam Size	Quantity	Length (ft)	Weight (lbs	\$/LF	Cost	Beam Size	Quantity		Weight (lbs	\$/LF	Cost
W8X10	36	517.27	5210	26.5	13707.655		48	567.12	5712		15028.6
W10X12	11	230.02	2771	29.5	6785.59	W10X12	10	186.12	2242	29.5	5490.54
W12X14	17	375.21	5311	32.5	12194.325	W12X14	16	360.16	5098	32.5	11705.3
W12X16	2	46	737	32.5	1495	W8X15	1	15.84	239	34	538.5
W12X19	2	69.51	1317	42	2919.42	W12X16	4	93	1491	32.5	3022.5
W14X22	10	294.67	6507	47.5	13996.825	W12X19	3	73.74	1398	42	3097.0
W16X26	8	267.24	6984	47.5	12693.9	W14X22	19	592.76	13091	47.5	28156.
W16X31	28	1087.95	33800	56	60925.2	W16X26	10	356.38	9313	47.5	16928.0
W18X35	16	464.07	16265	64	29700.48	W16X31	28	1033.37	32104	56	57868.7
W18X40	9	267.06	10723	72	19228.32	W18X35	14	469.42	16453	64	30042.8
W21X44	1	33.83	1497	77	2604.91	W18X40	18	529.9	21277	72	38152.0
	S	2	91122		\$176,251.63	W21X44	4	114.17	5050	77	8791.0
						W21X48	1	27.49	1319	86.5	2377.88
		3r	d Floor			W21X50	2	73.33	3668	86.5	6343.04
Beam Size	Quantity	Length (ft)	Weight (Ibs	\$/LF	Cost		Ĵ.		118455		\$227,543.1
W8X10	48	565.54	5696	26.5	14986.81	20					
W10X12	9	156.3	1883	29.5	4610.85			19	st Floor		
W12X14	16	361.83	5122	32.5	11759.475	Beam Size	Quantity	Length (ft)	Weight (lbs	\$/LF	Cost
W8X15	1	15.84	239	34	538.56	W8X10	17	188.19	1895	26.5	4987.03
W12X16	7	175.39	2811	32.5	5700.175	W10X12	6	131.21	1580	29.5	3870.69
W12X19	1	22.69	430	42	952.98	W12X14	8	192.55	2726	32.5	6257.87
W14X22	13	382.18	8440	47.5	18153.55	W12X16	14	410	6571	32.5	1332
W16X26	17	601.38	15716	47.5	28565.55	W12X19	1	28.83	546	42	1210.8
W16X31	25	1003.95	31190	56	56221.2	W14X22	2	52	1148	47.5	2470
W18X35	17	487.67	17092	64	31210.88	W16X26	5	177.33	4634	47.5	8423.17
W18X40	16	463.73	18620	72	33388.56	W18X40	1	33.9	1361	72	2440.0
W21X44	3	86.33	3819	77	6647.41	W36X135	3	160.75	21716	219	35204.2
W24X55	5	170	9371	94.5	16065	4			42177		\$78,189.6
	-	s	120429		\$228,801.00	0	8				

JOISTS									
Joist Size	Quantity	Length (ft)	Weight (Ibs	\$/Unit	Cost				
28K6	3	160.75	1833	14.7	2363.025				
XXGSP	9	482.25	0		0				
	66 66	Ĵ.	0.9165		2363.025				

Total Weight of Steel									
Beams	186.0915								
Columns	59.342								
Joists	0.9165								
Total	246.35								
	x 110%	Add 10% for nuts, bolts, plates, angles							
Total Steel	270.985								

STEEL COLUMNS									
Column Size	Quantity	Length (ft)	Weight (Ibs	\$/LF	Cost				
W10X33	57	2118	69981	77	163086				
W10X39	15	602	23557	77	46354				
W14X43	1	45	1929	122	5490				
W10X45	2	51	2308	77	3927				
W14X48	2	62	2975	122	7564				
W10X49	11	366	17934	113	41358				
	3 10		118684		\$267,779.00				

	Cart	Walaha
	Cost	Weight
Beams	\$710,785.45	186.0915
Columns	\$294,556.90	59.342
Joists	\$4,726.05	0.9165
Accessories	\$84,990.75	24.635
	\$1,095,059.15	270.985
Location Fact	c 98.8	
Final Cost	\$1,081,918.44	

AEI Team 10-2013

Appendix D: LEED PLANS

LEED INFORMATION FOR ALL CONSTRUCTION MANAGEMENT CREDITS PURSUED

SS Credit 1: Site Selection

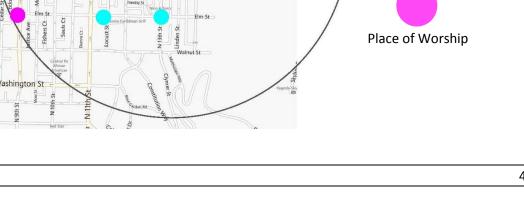
1 Point

Our site meets all requirements. It is NOT on:

- **Prime Farmland**
- Previously undeveloped land •
- Land for a habitat of an endangered species •
- Land within 100 feet of wetlands •
- Land that was parkland •

1 POINT

SS Credit 2: Development Density and Community Connectivity **4** Points Constructed on a site that: Is located on a previously developed site • Is within 1/2 mile of a residential area or neighborhood with density of 10 units per acre Within ½ mile of at least 10 basic services (see map below) Has pedestrian access between the building and the services Grocery, Convenience Store, Restaurant $\Theta \oplus$ (1) Day Care, School Place of Worship Washington St


4 POINTS

 \mathfrak{C}

10-201

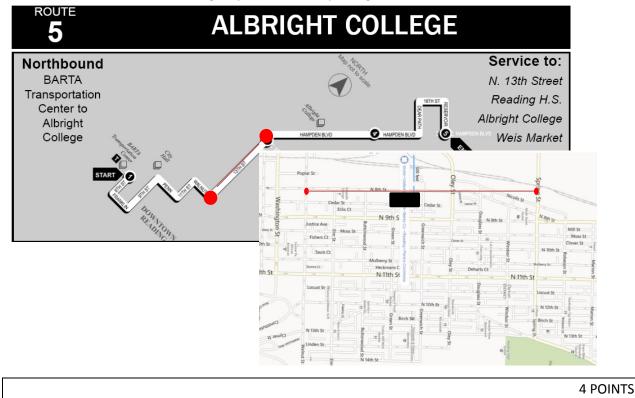
El Team

 \triangleleft

SS Credit 3: Brownfield Redevelopment

1 Point

Rehabilitating a damaged site where development is complicated by environmental contamination.


• Because soil contamination is present because of paint from one of the existing buildings, we will remediate this problem to protect the health of students

1 POINT

SS Credit 4.1: Alternative Transportation-Public Transportation Access 4 Points

Having a bus stop for two or more bus lines within ¼ mile of the main entrance of the school in addition to providing walking or biking lanes from the school to the transit lines.

School bus system can count as one and BARTA has a route that goes along 13th street.
Either use existing stop (2) or add stop along route.

SS Credit 4.2: Alternative Transportation – Bicycle Storage and Changing Rooms 1 Point

- Providing bike racks within 200 yards of a building entrance which we will do
- Providing showers which will be in the locker rooms of the pool area
- Providing dedicated bike lanes to the end of the school property in 2 or more directions with no barriers which will be on all roadways on our school property

1 POINT

က

El Team 10-201

 \triangleleft

SS Credit 4.4: Alternative Transportation – Parking Capacity

2 Points

Provide only the number of spaces required by local zoning and provide preferred parking for carpools

• 68 spots x 0.05% = 3.4 – 4 spots

2 POINTS

SS Credit 5.1: Site Development – Protect or Restore Habitat

1 Point

Previously Developed Sites

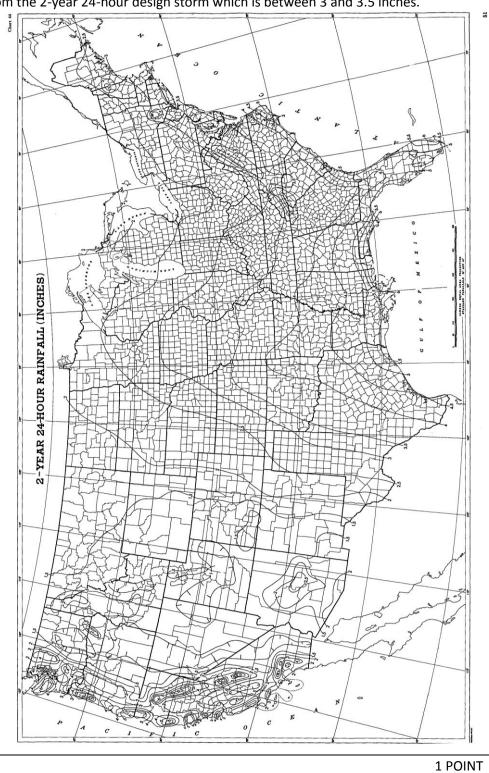
- Include native PA plants on 20 % of the entire site, including the building footprint:
 - 307x574x.2= 35,000 sq. ft. for whole block; 186x574x.2=22,000 sq. ft. exclude existing

1 POINT

SS Credit 5.2 Site Development – Maximize Open Space

1 Point

Sites with Zoning Ordinances but No Open Space Requirements


• Could not find any open space requirements, so we simply need 20 % of open vegetation which is what we will obtain from SS Credit 5.1

1 POINT

SS Credit 6.1: Stormwater Design – Quantity Control

1 Point

Limit natural hydrology on a site with existing imperviousness greater than 50%

• Use rainwater collection and vegetation to decrease volume of stormwater runoff by 25% from the 2-year 24-hour design storm which is between 3 and 3.5 inches.

MR Prerequisite 1: Storage and Collection of Recyclables

Required

Provide designated areas through each phase of construction for

- Paper
 - Corrugated cardboard
 - Glass
 - Plastics
 - Metals

REQ

MR Credit 2: Construction Waste Management

1-2 Points

Recycle/salvage nonhazardous construction and demolition debris. Large opportunity during demolition phase to recycle materials from existing buildings:

- Cardboard
- Metal
- Brick
- Mineral fiber panel
- Concrete
- Plastic
- Clean wood
- Glass
- Gypsum wallboard
- Carpet
- Insulation

50% gets 1 LEED point

1 POINT

MR Credit 5: Regional Materials

1-2 Points

Use building products within 500 miles of the building site. Façade has already been estimated to be almost 10 % of building value and SlenderWall is within range. Possible other components of the building:

- High Steel in Lancaster, PA <u>http://www.highsteel.com/</u>
- Cemex near Pittsburgh http://www.cemexusa.com/
- Casework possibly from <u>http://www.wood-metal.com/products/</u> (lots of LEED possibilities there)

With the addition of a few more materials, especially for finishes, 20% can be achieved.

2 POINTS

MR Credit 7: Certified Wood

1 Point

Using a minimum of 50% of FSC wood products based on cost.

- Formwork from places like 84 lumber that carry FSC wood products
- Casework possibly from http://www.wood-metal.com/products/ (lots of LEED possibilities there)

1 POINT

IEQ Credit 3.1: Construction Indoor Air Quality Management Plan – During Construction 1 Point

Must meet SMACNA IAQ Guidelines for buildings under construction, protect on-site and installed absorptive materials from moisture damage, replace all filtration media immediately prior to occupancy, prohibit smoking inside the building and within 25 feet of the building

- 1. Identify all potential sources of odor and dust
- 2. Locate occupied areas potentially affected by the project
- 3. Identify construction activities likely to produce dust or odor in occupied areas
- 4. Classify potential IAQ problems by severity
- 5. Identify available control options
- 6. Select specific control measures

Important to have protected storage areas, perhaps by getting a portion of the building done quickly to store stuff.

1 POINT

IEQ Credit 3.2 Construction Indoor Air Quality Management Plan – Before Occupancy 1 Point

Air Testing – Conduct baseline IAQ testing after construction ends and prior to occupancy, testing against the EPA Compendium of Methods for the Determination of Air Pollutants in Indoor Air.

• Important to leave time in the schedule for this process to take place

Cannot exceed	d following values:	
Contaminant Maximum C	oncentration	
Formaldehyde	27 parts per billion	
Particulates (PM10)	50 micrograms per cu	bic meter
Total volatile organic comp	ounds (TVOCs)	500 micrograms per cubic meter
4-Phenylcyclohexene (4-PC	CH)* 6.5 micro	grams per cubic meter
Carbon monoxide (CO)	9 part per million and	no greater than 2 parts per million above outdoor levels
*This test is required only if carp	ets and fabrics with styrene butadiene ru	bber (SBR) latex backing are installed as part of the base building systems.

1 POINT

IEQ Credit 4: Low Emitting Materials

1-4 Points

Reduce indoor contaminants. Easiest two are Flooring Systems and Furniture and Furnishings because lots of products are either GREENGAURD or meet the California Department of Health Services Standard

2 POINTS

ID Credit 1: Innovation in Design

1-4 Points

For each credit pursued, a detailed writing will be made displaying:

- The intent of the proposed credit
- The proposed requirement for compliance

013

10-2(

Ε

σ

EITe

 \triangleleft

- The proposed submittals to demonstrate compliance
- The design approach used to meet the requirements

Most likely at least one point will be achieved from doing this.

1 POINT

ID Credit 3: The School as a Teaching Tool

1 Point

Once all of our Green initiatives have been decided on, we must decide upon how using the school as a teaching tool will be used by the teachers. Must:

- Provide 10 hours of teaching per year per student
- Display the relationship between human ecology, natural ecology, and the building
- Must be approved by school

1 POINT

Appendix E: CODE ANALYSIS

Section 349.16 of the Pennsylvania School Code states that school buildings must follow these codes or professional guidelines:

-	0
CEFP	Council of Educational Facilities Planners 29 West Woodruff Avenue, Columbus; OH 43210
USSGSL	United States Standard Guide for School Lighting 345 East 47th Street, New York, NY 10017
IES	Illuminating Engineering Society 345 East 47th Street, New York, NY 10017
ANSI	American National Standards Institute 1430 Broadway, New York, NY 10018
ASHRAE	American Society of Heating, Refrigeration and Airconditioning Engineers United Engineering Center 345 East 47th Street, New York, NY 10017
NPC	National Plumbing Code Part of ANSI
NEC	National Electric Code Part of ANSI
AGA	American Gas Association 605 Third Avenue, New York, NY 10016
ASTM	American Society for Testing and Materials 1916 Race Street, Philadelphia, PA 19103
ASME	American Society for Mechanical Engineers United Engineering Center 345 E. 47th Street, New York, NY 10017
NFPA	National Fire Protection Association 60 Batterymarch Street, Boston, MA 02110 (Usually included in ANSI)
SMACNA	Sheet Metal Contractors National Association—Standards 1611 North Kent Street, Arlington, VA 22209
EFL	Educational Facilities Laboratories 477 Madison Avenue, New York, NY 10022
OSHA	Pennsylvania Department of Labor and Industry Harrisburg, PA 17120
BOCA	Building Officials and Code Administrators International Inc. 1313 East 60th St.

Chicago, IL 60637

Code	Section	Title
The Pennsylvania Code	349.5	Building Space Allocation
The Pennsylvania Code	349.6	Building Design
The Pennsylvania Code	349.7	Approval of Sites
The Pennsylvania Code	349.11	Aggregate Building Expenditure Standard; Act 34 of 1973
International Building Code	Chapter 3	Use and Occupancy Classification
International Building Code	Chapter 5	General Building Heights and Areas
International Building Code	Chapter 6	Types of Construction
International Building Code	Chapter 7	Fire & Smoke Protection Features
International Building Code	Chapter 9	Fire Protection Systems
International Building Code	Chapter 10	Means of Egress

SECTION 2: SUPPORTING DOCUMENTATION [28 | 44]

 \bigvee

PA CODE 349.5 BUILDING SPACE ALLOCATIONS

- (a) *Elementary schools*. The amount of space included in the schedule of space allocations for an elementary school shall approximate 58 square feet for each student in approved full-time equivalent project enrollment
- (b) *Exceptions*. Any departure of 10% or more from the established expectancy levels for the scheduled area of a project shall require justification and approval from the Department.

The floor area square footage is approximately 83,000 SF (without the swimming pool), meaning, based on building square footage, that the enrollment could hold a maximum of around 1,573 full-time equivalent students (FTE).

PA CODE 349.6 BUILDING DESIGN

(a) *Design tolerances*. Any design ratio of architectural space to scheduled space which exceeds 1.58 to 1.0 shall require approval from the Department

Scheduled Area (Instructional Spaces)										
Room	S.F.	Room	S.F.	Room	S.F.					
104	6141	202	613	302	133					
109	468	207	201	303	223					
110	251	208	1931	304	257					
111	159	209	407	309	201					
112	77	211	72	310	875					
113	295	212	1143	311	812					
119	353	213	536	312	792					
121	123	215	1545	313	801					
122	200	216	667	314	816					
123	80	217	687	316A	756					
132	1453	218	690	317	687					
134	765	219	294	318	687					
135	789	222	1108	319	690					
136	789	223	1022	324	1112					
140	1109	224	1022	325	1081					
141	1081	225	1022	326	1081					
142	1081	226	1022	327	1081					
143	1081	227	1041	328	1081					
144	1081	233	912	329	1101					
145	1114	234	991							
155	943	235	867							
159	892	236	847							
160	891									
	21216 18640 14267									
		Architect	ural Space		-	83,000				
		Ra	tio			1.53				

PA CODE 349.7 APPROVAL OF SITES

(a) *Approvable size*. Usable acreage as follows shall be considered optimum: elementary schools—10 acres; schools for middle grades—20 acres, schools for high school grades—35 acres; and part-time vocational-technical schools—15 acres.

The size of the site when incorporating the entire city block is roughly 180,000 SF, which is much less than the limit of 10 acres (436,000 SF) specified by PA Code 349.7.(a).

PA CODE 349.11 AGGREGATE BUILDING EXPENDITURE STANDARD; ACT 34 OF 1973 (a) *Rated pupil capacity*. For the purpose of computing the aggregate building expenditure standard of a project, the rated pupil capacity shall be determined on the basis of the method used by the Department for school building reimbursement purposes during the school year 1971-1972.

(b) *1971-1972 method.* Rated pupil capacity shall be determined in accordance with the following formulae:

(1) *Elementary building*. The rated pupil capacity for an elementary building equals the sum of the capacity points for classrooms, special education, kindergarten, in accordance with the following chart:

	Elementary Buildings										
Size (SF)	Number	Points	Act 34 Capacity								
550-659	0	24	0								
660-769	6	32	192								
770-849	8	34	272								
850+	24	35	840								
		TOTAL	1304								

IBC 2009 CHAPTER 3 USE AND OCCUPANCY CLASSIFICATIONS

Section 303.1 Exception 4. Assembly areas that are accessory to Group E occupancies are not considered separate occupancies except when applying the assembly occupancy requirements of Chapter 11. A-4 Assembly uses intended for viewing of indoor sporting events and activities with spectator seating including, but not limited to arenas, skating rinks, swimming pools, and tennis courts.

Section 305.1 Educational Group E. Educational Group E occupancy includes, among others, the use of a building or structure, or a portion thereof, by six or more persons at any one time for educational purposes through the 12th grade.

IBC 2009 CHAPTER 5 GENERAL BUILDING HEIGHTS AND AREAS

в	uilding heigh Building a		shown in fe	et above gra	de plane. Sto	HTS AND AF ory limitation ed by the def	s shown as			e.				
		TYPE OF CONSTRUCTION TYPE I TYPE II TYPE III TYPE IV TYPE V												
		A	B	A	в	A	в	HT	A	в				
	HEIGHT(feet)	UL	160	65	55	65	55	65	50	40				
GROUP						IES(S) A (A)								
A-I	S A	UL UL	5 UL	3 15,500	2 8,500	3 14,000	2 8,500	3 15,000	2 11,500	1 5,500				
A-2	S A	띠	11 UL	3 15,500	2 9,500	3 14,000	2 9,500	3 15,000	2 11,500	1 6,000				
A-3	S A	UL UL	11 UL	3 15,500	2 9,500	3 14,000	2 9,500	3 15,000	2 11,500	1 6,000				
A-4	S A	UL UL	11 UL	3 15,500	2 9,500	3 14,000	2 9,500	3 15,000	2 11,500	1 6,000				
A-5	S A	UL UL	UL UL	UL UL	UL UL	띠	UL UL	UL UL	UL UL	UL UL				
в	S A	UL UL	11 IП.	5 37,500	3 23,000	5 28,500	3 19,000	5 36,000	3 18,000	2 9,000				
E	S A	UL UL	5 UL	3 26,500	2 14,500	3 23,500	2 14,500	3 25,500	1 18,500	1 9,500				
	ę	Ш	11	4	2									

 \mathfrak{C}

FIRE-RESIST	ANCE RA	TING RE		LE 601 ENTS FO		IG ELEMI	ENTS (hours)		
	TYF	PEI	TY	PE II	түр	EIII	TYPE IV	TYPE V	
BUILDING ELEMENT	А	В	Ad	в	Ad	в	нт	Ad	в
Primary structural frame ^g (see Section 202)	3ª	2ª	1	0	1	0	НТ	1	0
Bearing walls Exterior ^f , g Interior	3 3ª	2 2ª	1	0	2 1	2 0	2 1/HT	1 1	0
Nonbearing walls and partitions Exterior					See T	able 602			
Nonbearing walls and partitions Interior ^e	0	0	0	0	0	0	See Section 602.4.6	0	o
Floor construction and secondary members (see Section 202)	2	2	1	0	1	0	нт	1	0
Roof construction and secondary members (see Section 202)	1 ¹ /2 ^ь	1ь, с	1ь, с	oc	1ь, с	0	нт	1ь, с	0

IBC 2009 CHAPTER 6 TYPES OF CONSTRUCTION

IBC 2009 CHAPTER 3 USE AND OCCUPANCY CLASSIFICATIONS Section 702.1 Definitions.

<u>Fire Area</u> – aggregate floor area enclosed and bounded by fire walls, exterior walls, or horizontal assemblies.

<u>Fire Wall</u> – a fire resistance rated wall having protected openings which restricts the spread of fire and extends continuously from the foundation to or through the roof with sufficient structural stability under fire conditions to allow collapse of construction on either side without collapse of the wall.

 $\underline{\text{Fire Barrier}}$ – a fire resistance rated wall assembly of materials designed to restrict the spread of fire in which continuity is maintained

IBC CHAPTER 9 FIRE PROTECTION SYSTEMS

Section 903.2.1.4 Group A-4. An *automatic sprinkler system* shall be provided for Group A-4 occupancies where one of the following conditions exists:

- 1. The fire area exceeds 12,000 SF
- 2. The fire area has an occupant load of 300 or more
- 3. The *fire area* is located on a floor other than a *level of exit discharge* serving such occupancies

Section 902.2.3 Group E. An automatic sprinkler system shall be provided for Group E occupancies

IBC CHAPTER 10 MEANS OF EGRESS

Section 1004.7 Fixed Seating. For areas having fixed seating and *aisles* the *occupant load* shall be determined by the number of fixed seats installed therein. The *occupant load* for areas in which fixed seating is not installed, such as waiting spaces and *wheel-chair* spaces, shall be determined in accordance with Section 1004.1.1 and added to the number of fixed seats. For areas having fixed seating without dividing arms, the *occupant load* shall not be less than the number of seats based on one person for each 18 inches of seating length.

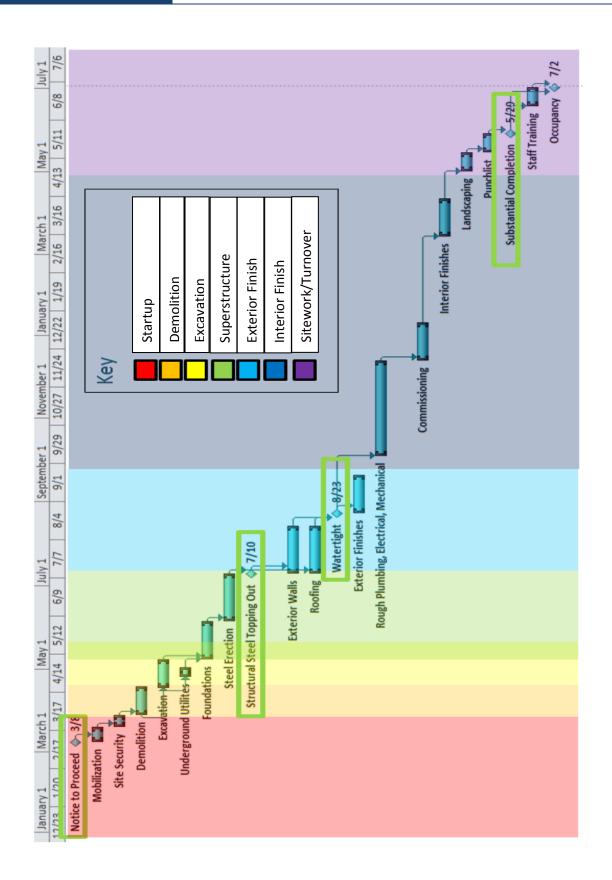
Maximum Occupancies by Area (by table 1004.1.1)		
Area		Occupancy
Average		
Classroom		45
Multipurpose		877
Community Room		160
Library		38
Pool		54
Pool Deck		180
Pool Seating		120
Locker Rooms		20

Section 1005.1 Minimum Egress Width. The total width of means of egress in inches shall not be less than the total *occupant load* served by the *means of egress* multiplied by 0.3 inches per occupant for stairways and by 0.2 inches per occupant for other egress components. Multiple *means of egress* shall be sized such that the loss of one shall not reduce the available capacity to less than 50% of the required capacity

(234 occupants in pool area)/2 exits x 0.3 inches = 35inch wide stairways minimum (234 occupants in pool area)/1.5 exits x 0.3 inches = 47inch wide stairways needed in the case that one is inaccessible. Increase to 48 inches because of Section

1007.3 Stairways.

(234 occupants in pool area)/2 exits x 0.2 inches = 24 inches wide for other parts of egress path(234 occupants in pool area)/1.5 exits x 0.2 inches = 32 inches wide for other parts of egress path in the case that an exit is inaccessible.


Section 1007.5 Platform lifts. Shall not serve as a part of an accessible means of egress.

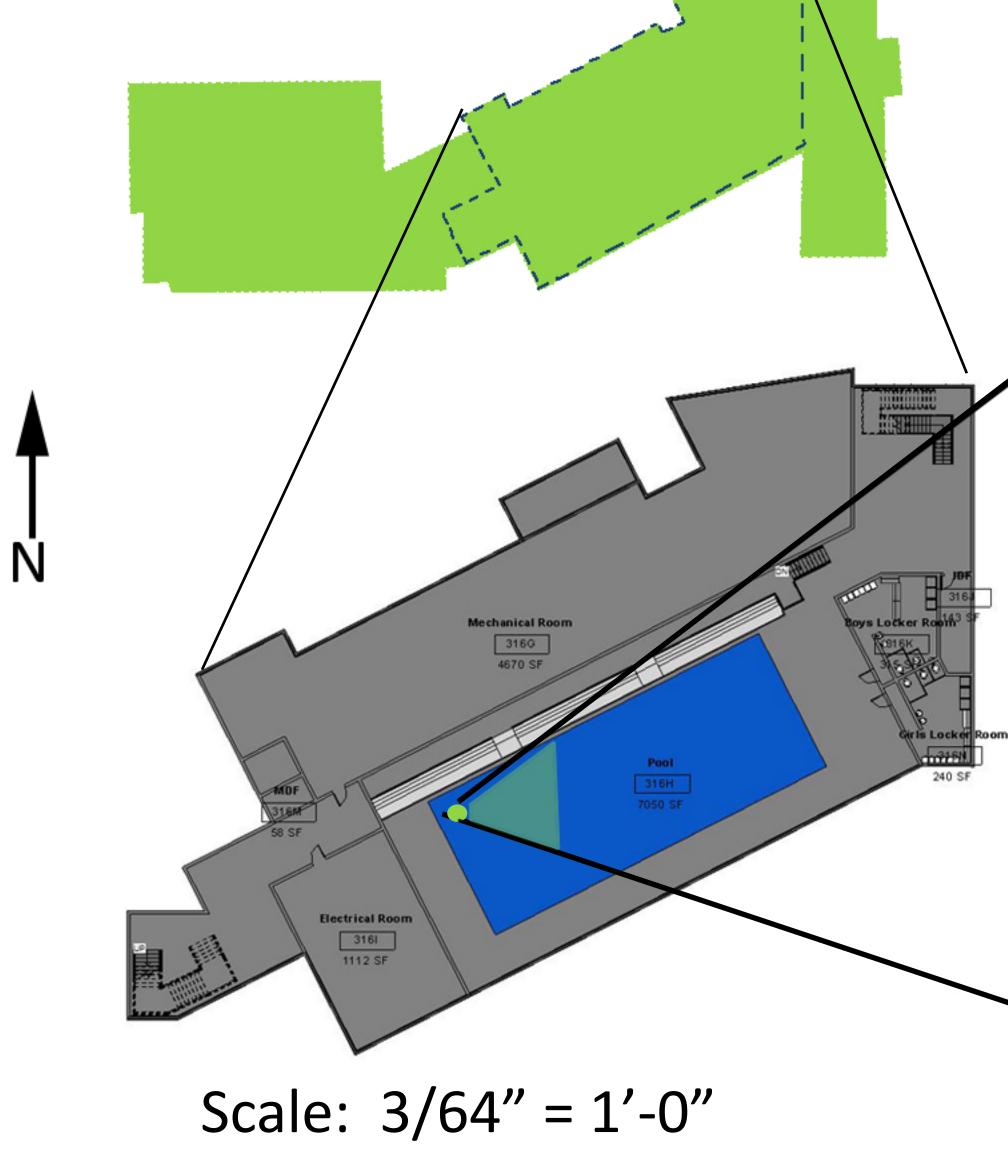
Section 1007.5.1 Openness. Platform lifts on an *accessible means of egress* shall not be installed in a fully enclosed hoistway

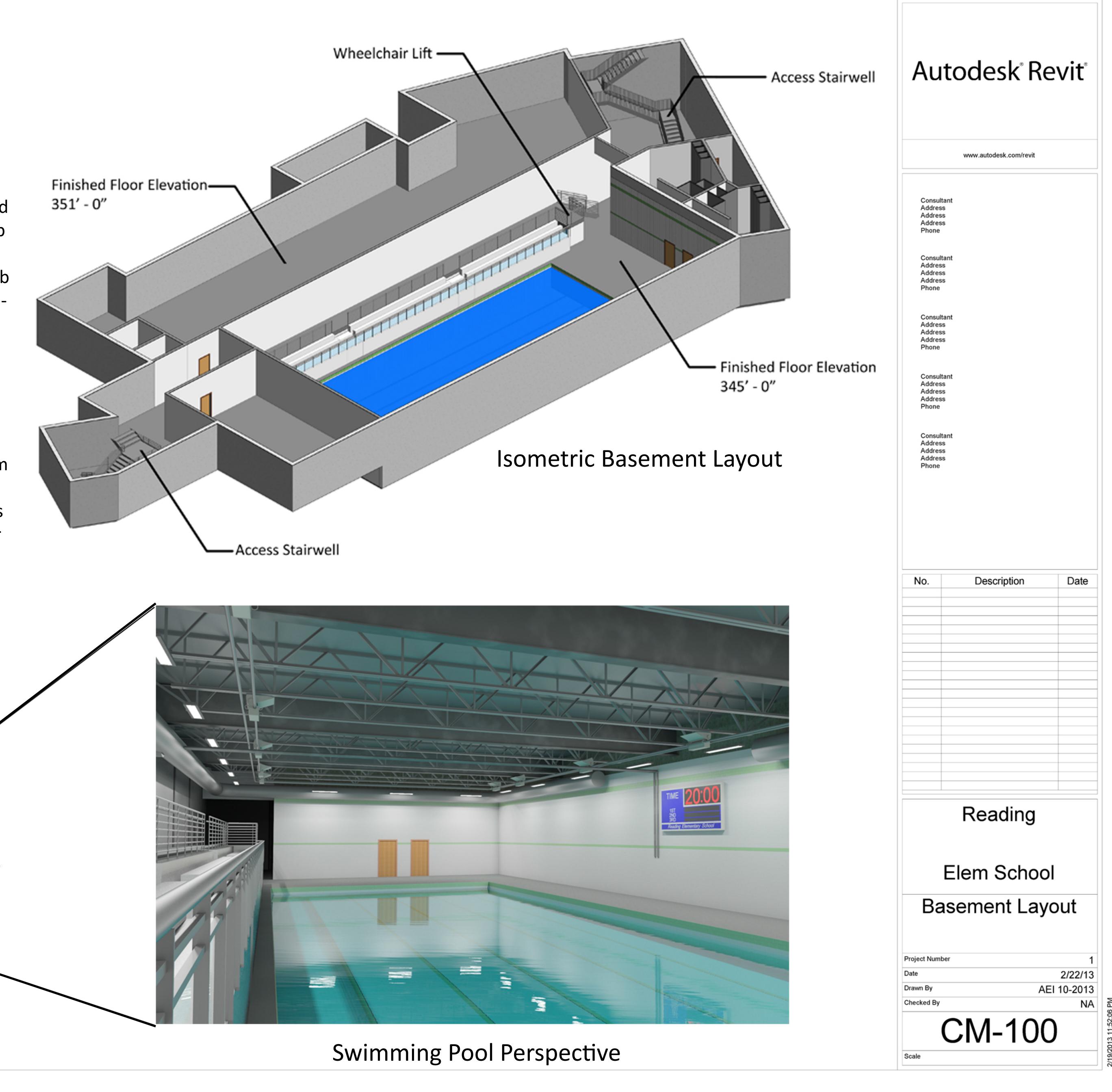
Section 1007.6.1 Size. Each *area of refuge* shall be sized to accommodate one *wheelchair space* of 30 inches by 48 inches for each 200 occupants, based on the *occupant load of the area of refuge* and areas served by the *area of refuge*

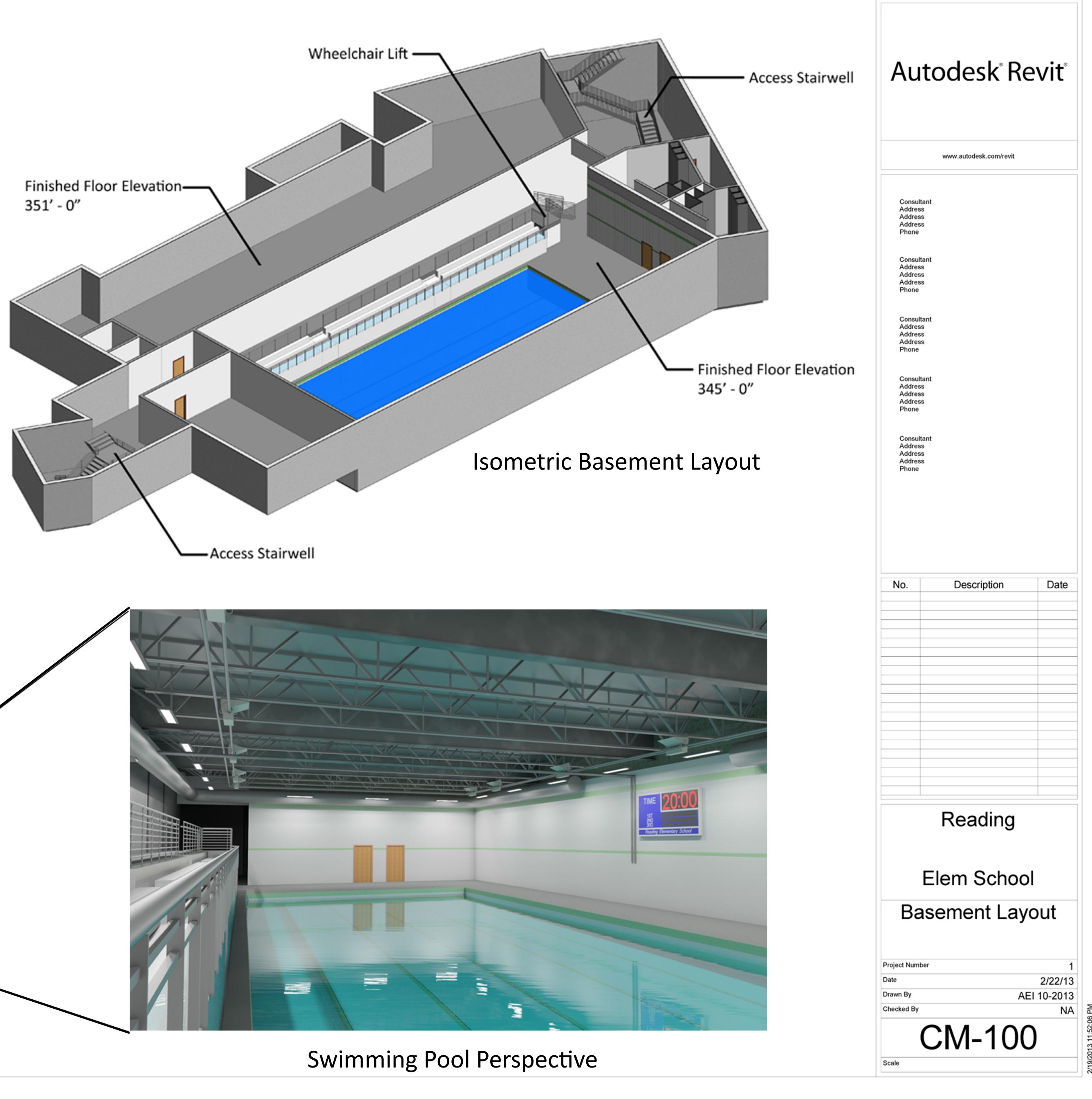
Appendix F: SCHEDULES

Procurement Schedule of Major Deliveries						
Item	Submittal to CM	Submittal to Owner/Architect	Reviewed Submittal to CM	Order Date	Lag Time	Delivery Date
Steel Mill Order	3/8/2013	3/11/2013	3/25/2013	3/27/2013	10 weeks	6/5/2013
Electrical Switchgear	10/7/2013	10/18/2013	11/1/2013	11/4/2013	4 weeks	12/2/2013
Electrical Transformer	9/18/2013	9/20/2013	10/4/2013	10/7/2013	8 weeks	12/2/2013
Electrical Generator	8/21/2013	8/23/2013	9/6/2013	9/9/2013	12 weeks	12/2/2013
Plumbing Equipment	10/16/2013	10/18/2013	11/1/2013	11/4/2013	4 weeks	12/2/2013
Façade Materials	3/27/2013	3/29/2013	4/12/2013	4/15/2013	12 weeks	7/8/2013
HVAC Air Handling Equipment	7/17/2013	7/19/2013	10/4/2013	10/7/2013	8 weeks	12/2/2013
Rebar Shop Drawings	3/22/2013	3/25/2013	4/8/2013	4/10/2013	4 weeks	5/8/2013

Appendix G: REFERENCES & RESOURCES


- Abramson, Paul. "School Construction Spending Shifts Gears." *The 2011 School Construction Report* Feb. 2011: n. pag. *http://www.peterli.com*. Web. 15 Nov. 2012.
- "City of Reading, Pennsylvania | Welcome." *City of Reading, Pennsylvania | Welcome*. N.p., n.d. Web. 1 Nov. 2012. http://www.readingpa.gov>.
- "EERE: Buildings Database." *EERE: Buildings Database*. N.p., n.d. Web. 14 Nov. 2012. http://buildingdata.energy.gov>.
- "Earthquake Hazards Program." *Earthquake Hazards Program*. N.p., n.d. Web. 1 Nov. 2012. http://earthquake.usgs.gov>.
- International building code 2009. Country Club Hills, Ill.: International Code Council, 2009. Print.
- "Pennsylvania Elementary Schools." *Elementary Schools .org list of private elementary schools and public elementary schools.* N.p., n.d. Web. 1 Nov. 2012. http://elementaryschools.org/pennsylvania.html.
- RSMeans building construction cost data 2013. 71st annual ed. Norwell, MA: RSMeans, 2012. Print.
- "Reed Construction Data." *Reed Construction Data*. N.p., n.d. Web. 20 Oct. 2012. http://Reedconstructiondata.com>.
- "The Pennsylvania Code Online." *The Pennsylvania Code Online*. N.p., n.d. Web. 1 Nov. 2012. http://Pacode.com>.
- "Weccacoe Playground 2014." *Weccacoe Playground 2014 Playground Renewal*. N.p., February 2012, Web. 18 Feb. 2013.


<http://qvna.org/qvna/wpcontent/uploads/2012/04/2014_Playground.pdf>


"Playground Design and Equipment." *Whole Building Design Guide*. Ruth, Linda. 3 June 2008. Web. 18 February 2013 < http://www.wbdg.org/resources/playground.php>

The proposed add-alternate for the community pool addition was designed to maximize the available site area by not making significant changes to the building footprint. The original basement layout will simply be extended to house the pool, and structure in that area will be reinforced using poured concrete bearing walls and deep floor joists. The extra area gained on site with this design will allow room for a community playground and a more centralized parking lot. It will also help to gain both open site and permeable cover LEED points as well as turn the RES into a centralized hub to be enjoyed by the community. It is recommended that the city of Reading approve for this add alternate to gain the benefits of a reduced cost when compared to a future pool addition in a seperate building

Design features include a pool deck area six feet below the normal basement elevation for optimum viewing, a 120 person seating area, a timeclock, a sound system, highly visible locker room entrances for the safety of children, and the 6 lane, 25 meter pool itself.

In each of the three floors of RES, the design team wanted to showcase the theme of "using he building as a learning tool." This will help to gain LEED credits and will also turn the school into an immersive learning environment for students so that they can learn the importance of green building technology. A Typical Classroom has exposed systems (see Summary Narrative Figure 4) and the theme is continued in spaces like the Multipurpose room and Hallways. On the third floor, the Geen Roof can be accessed through the Large Group Instruction area. The Green Roof is not only environmentally friendly, but can also be a unique learning environment.

Typical Hallway Perspective

Green Roof Perspective

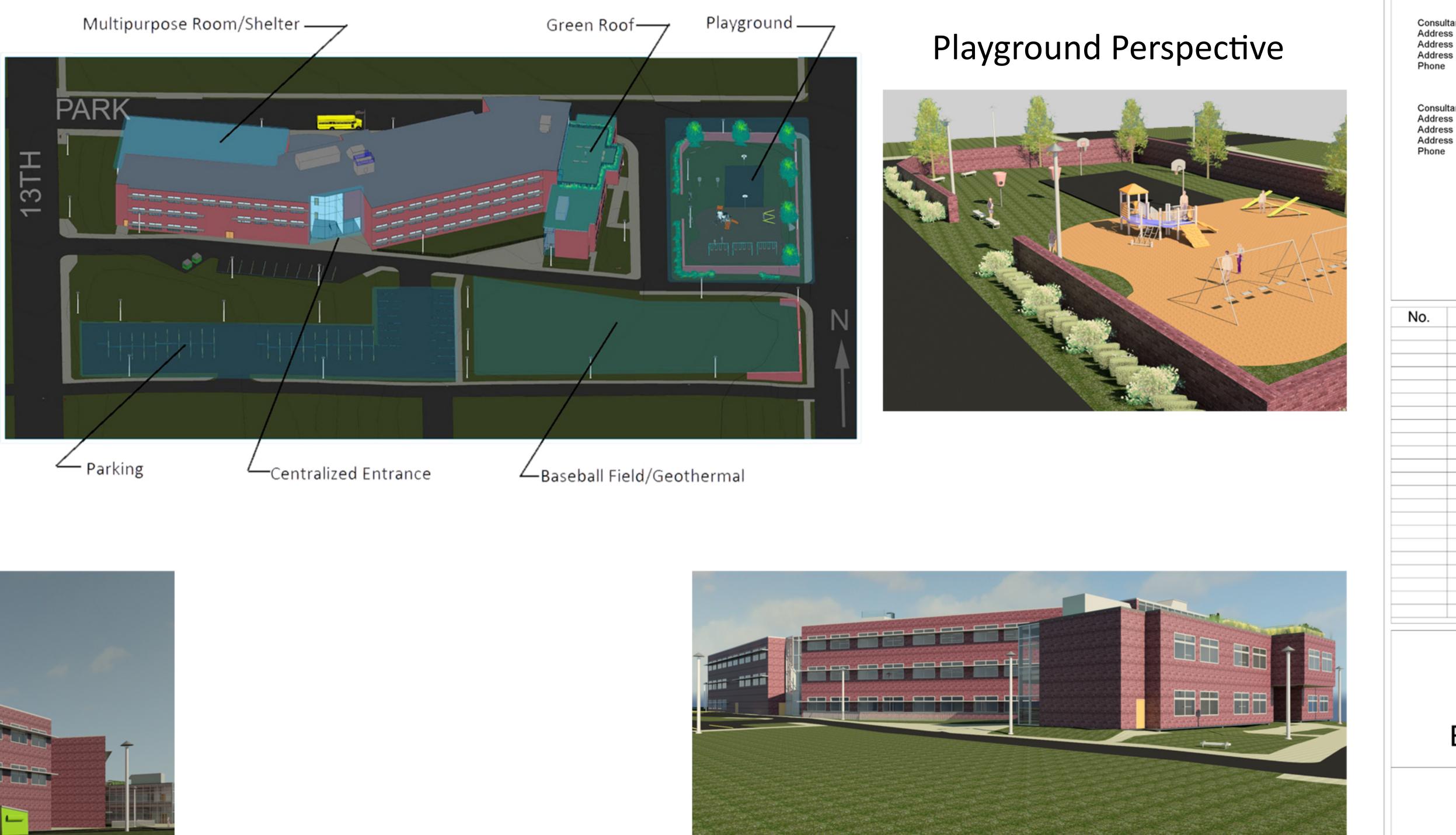
Address Phone

Address Address Address Phone

Address Address Address Phone

Address Phone

Address Phone



	Eler
	Flo
	h
roject Num	ber
ate	
rawn By	
hecked By	
	CN
cale	

Northwest Perspective

One of the design goals was to enhance security for RES. Some of the measures taken to achieve this include a well-lit site, an architectural security wall around the playground, and a more convenient parking lot location to reduce walking distance to the secure, centralized entrance. Also, the multipurpose room has been strengthened structurally so that it can behave as an emergency shelter for the community. From a construction standpoint, using Revit to model the design features helps to find constructability problems early, before they can reach the field

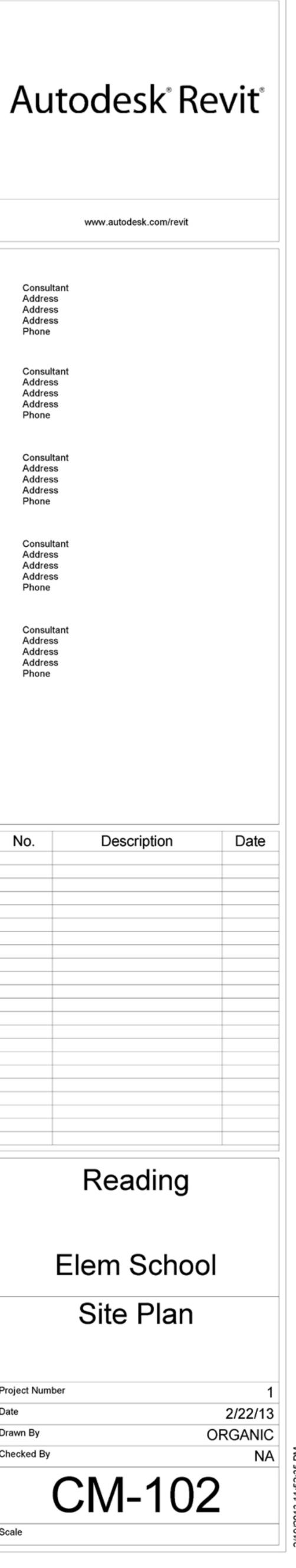
Southwest Perspective

Northeast Perspective

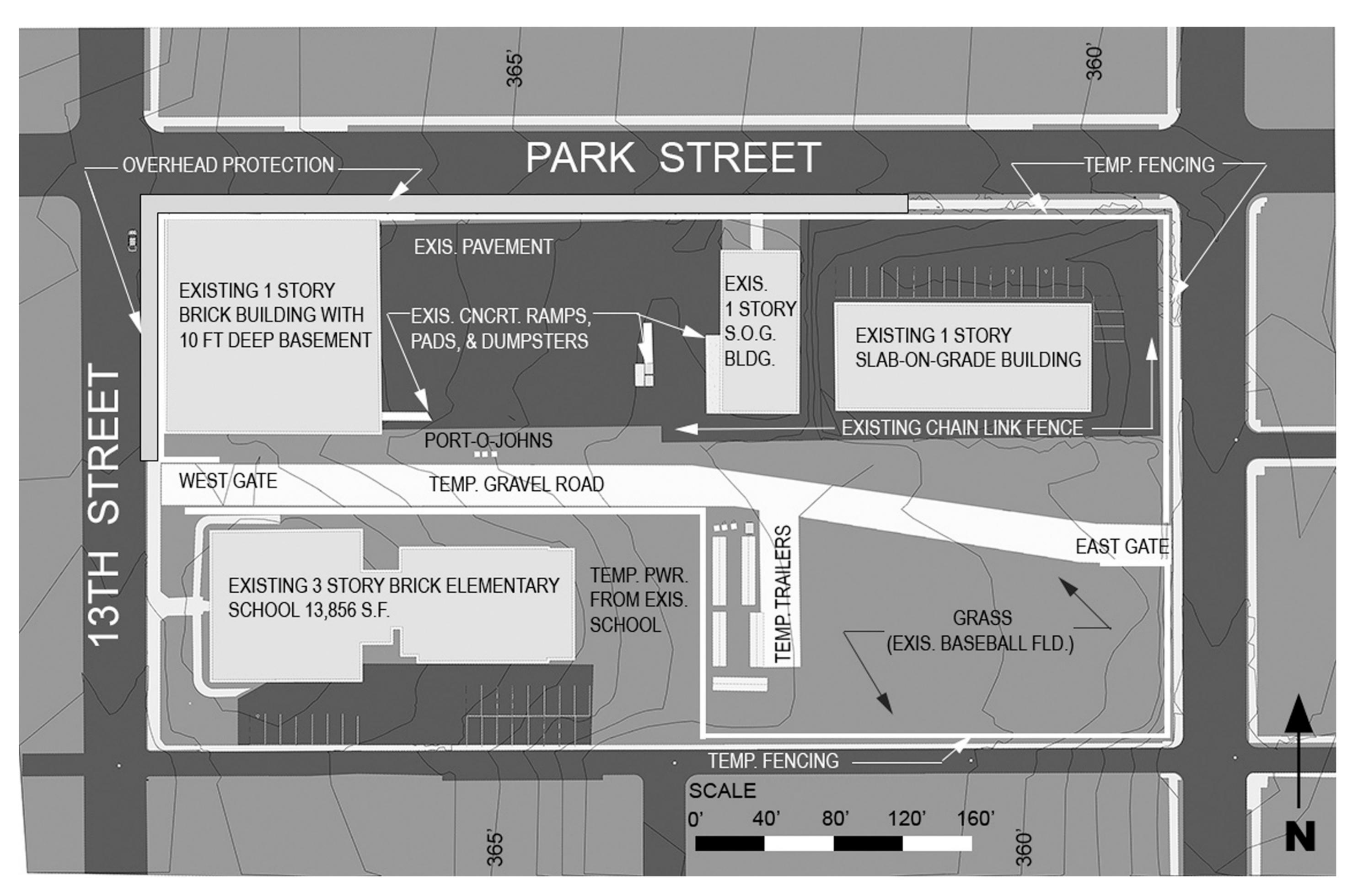
Southeast Perspective

Consultant Address Address Address Phone

Consultant Address Address Address Phone

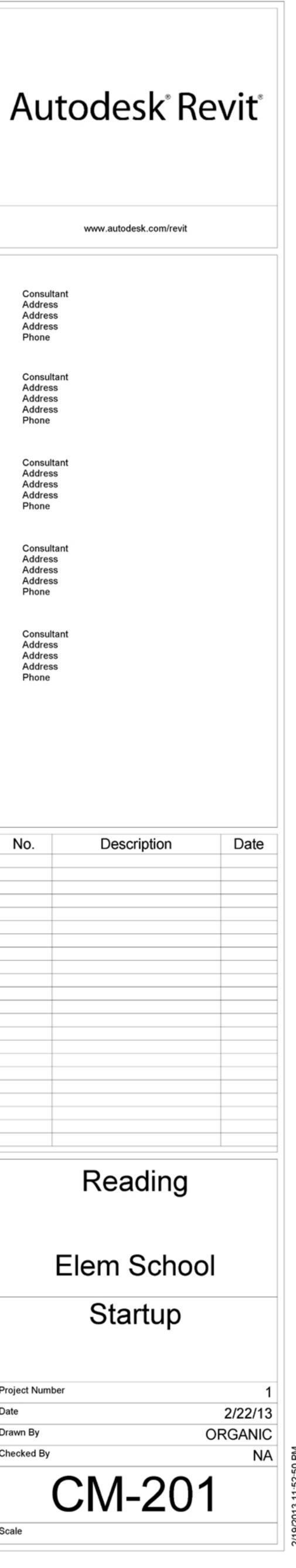

Consultant Address Address Address Phone

Consultant Address

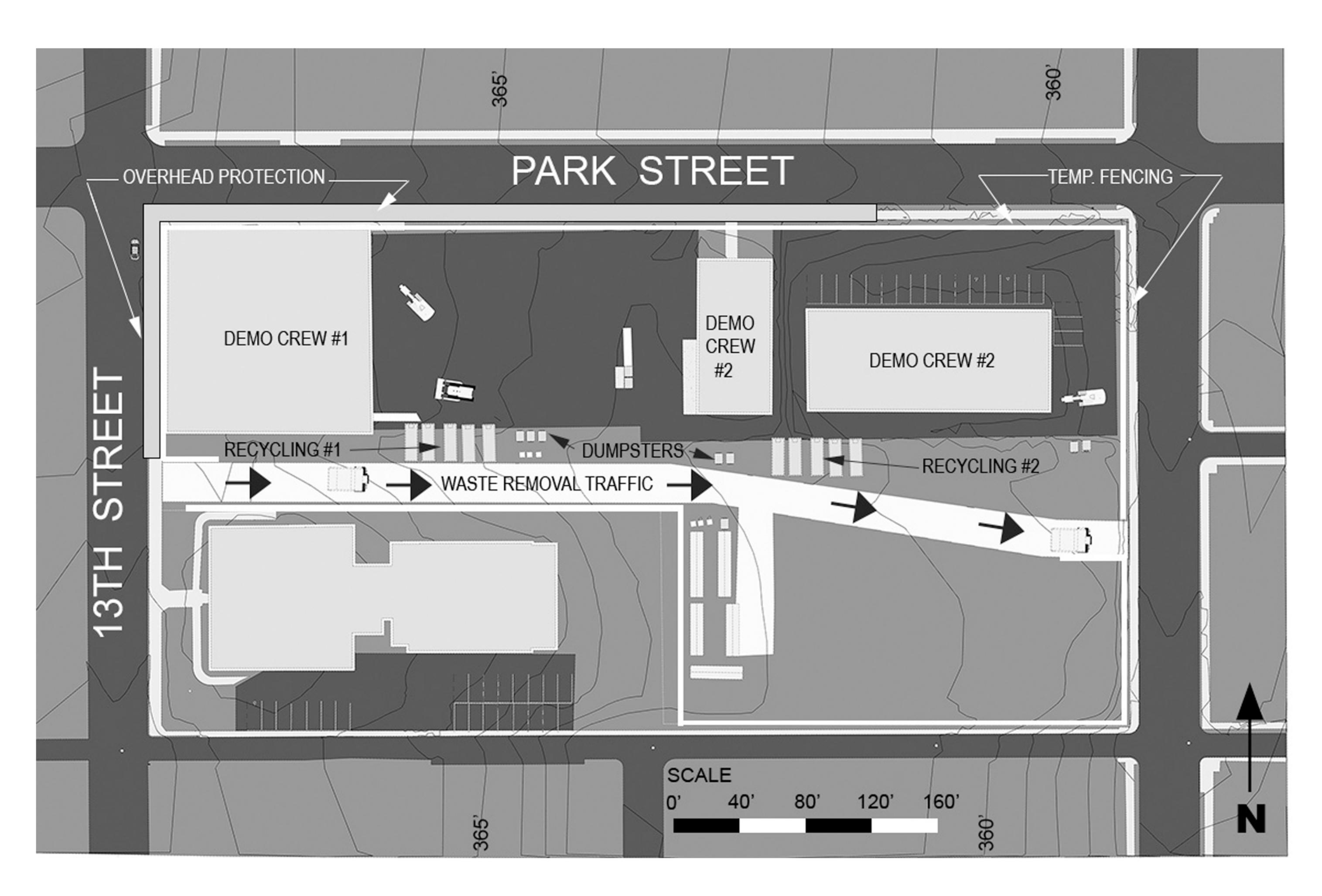

Consultant Address Address Address

No.	

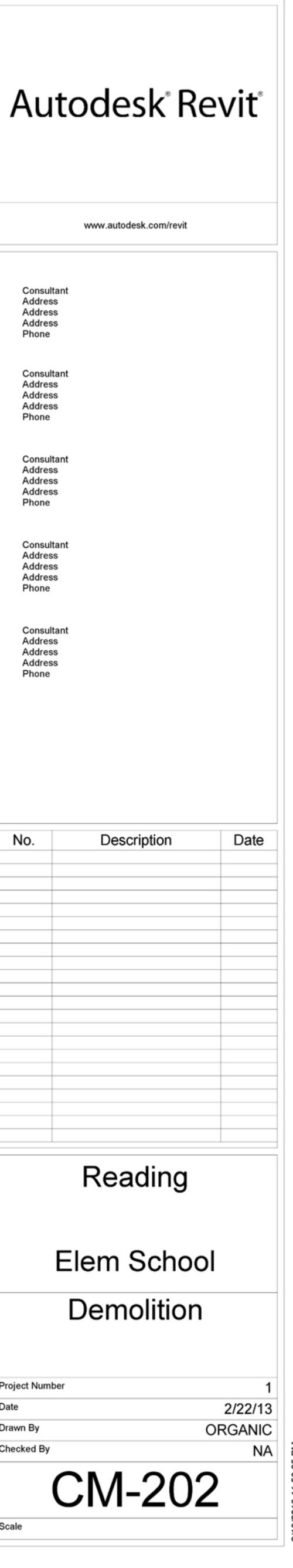
	Eler
	Si
Project Num	ber
Date	
Drawn By	
Checked By	
	CN
Scale	

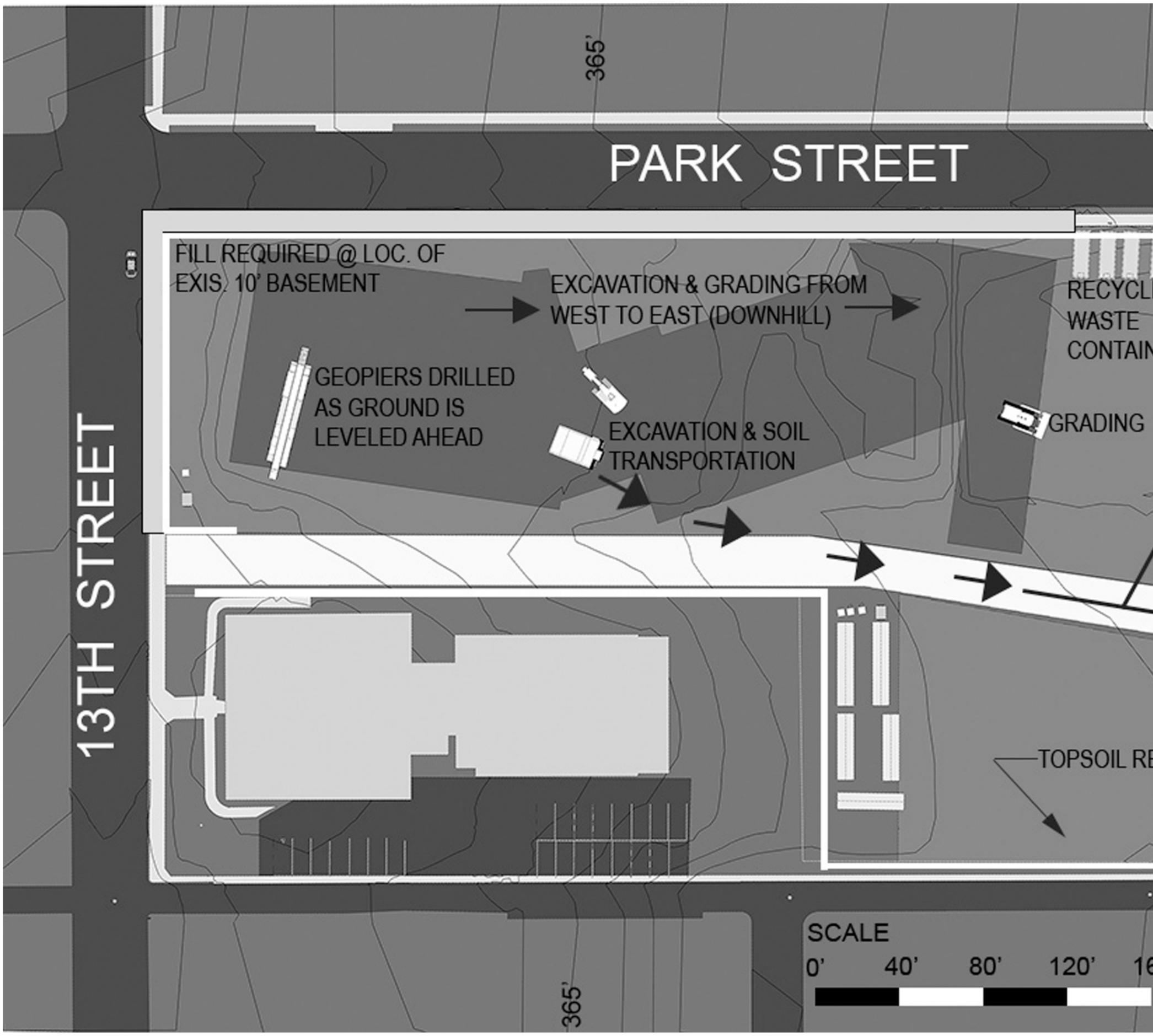


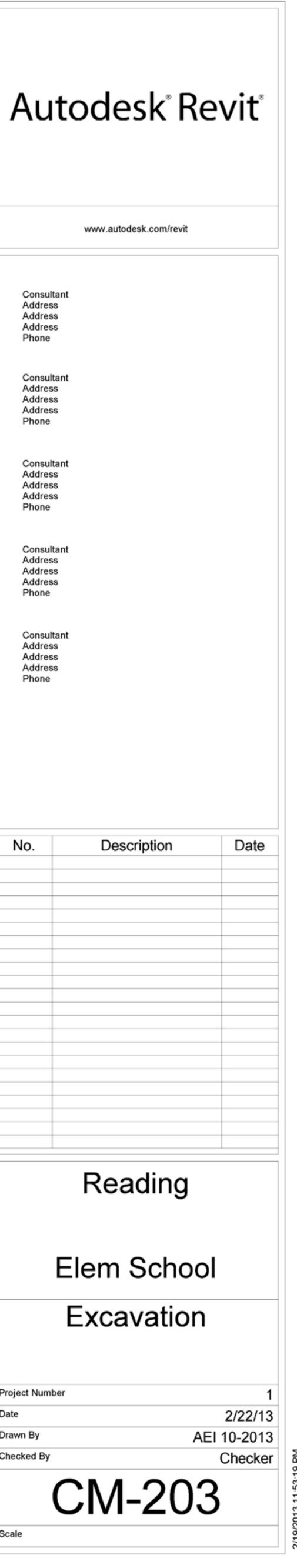
STARTUP: March 8, 2013



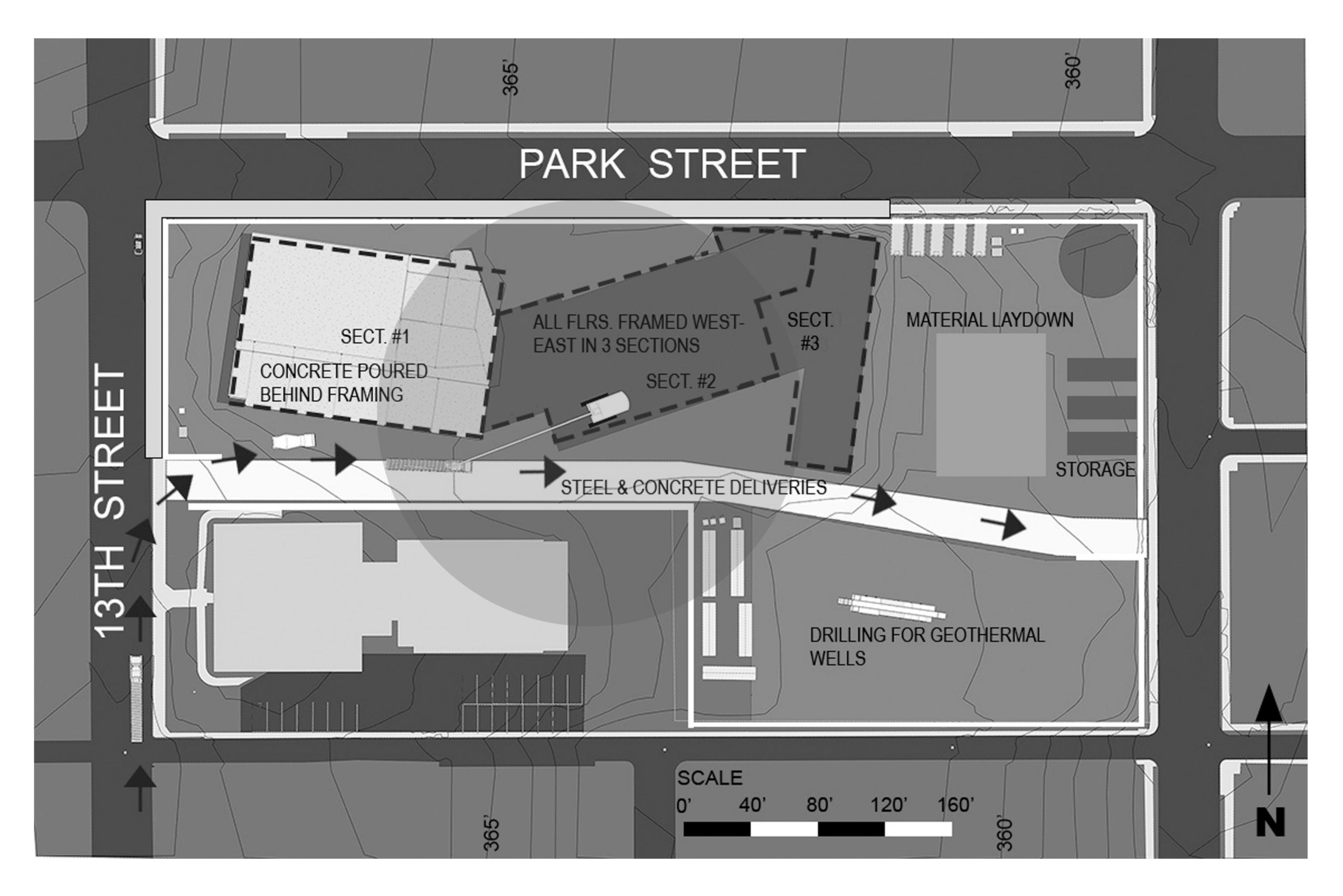
SAFETY CONCERNS: Park Street traffic, children in school, and close sidewalk proximity QUALITY CONTROL: Properly isolating construction site to alleviate disturbance to the city of Reading


Consultant Address Address Address Phone No. Project Number Date Drawn By Checked By Scale

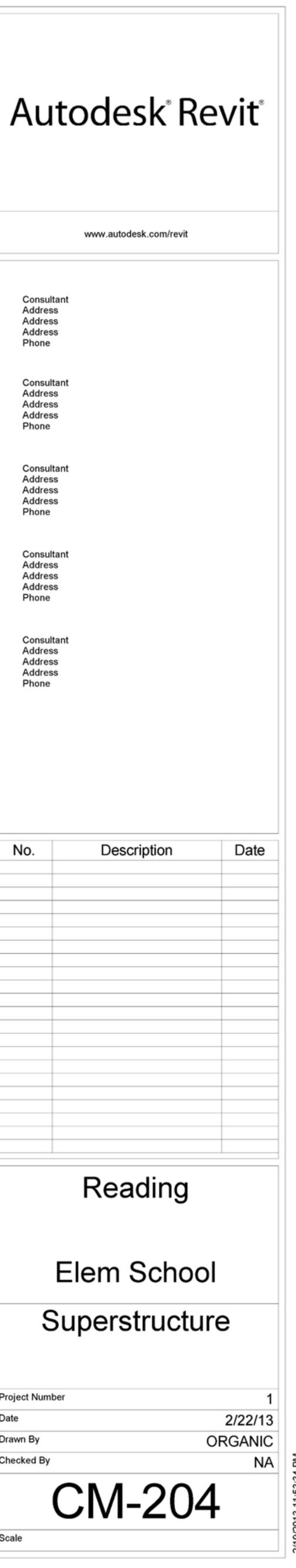

DEMOLITION: March 18, 2013 SAFETY CONCERNS: Falling debris and possible lead paint and asbestos contamination QUALITY CONTROL: Efficient recycling and material salvaging plan


Consultant Address Address Address Phone No. Project Number Date Drawn By Checked By Scale

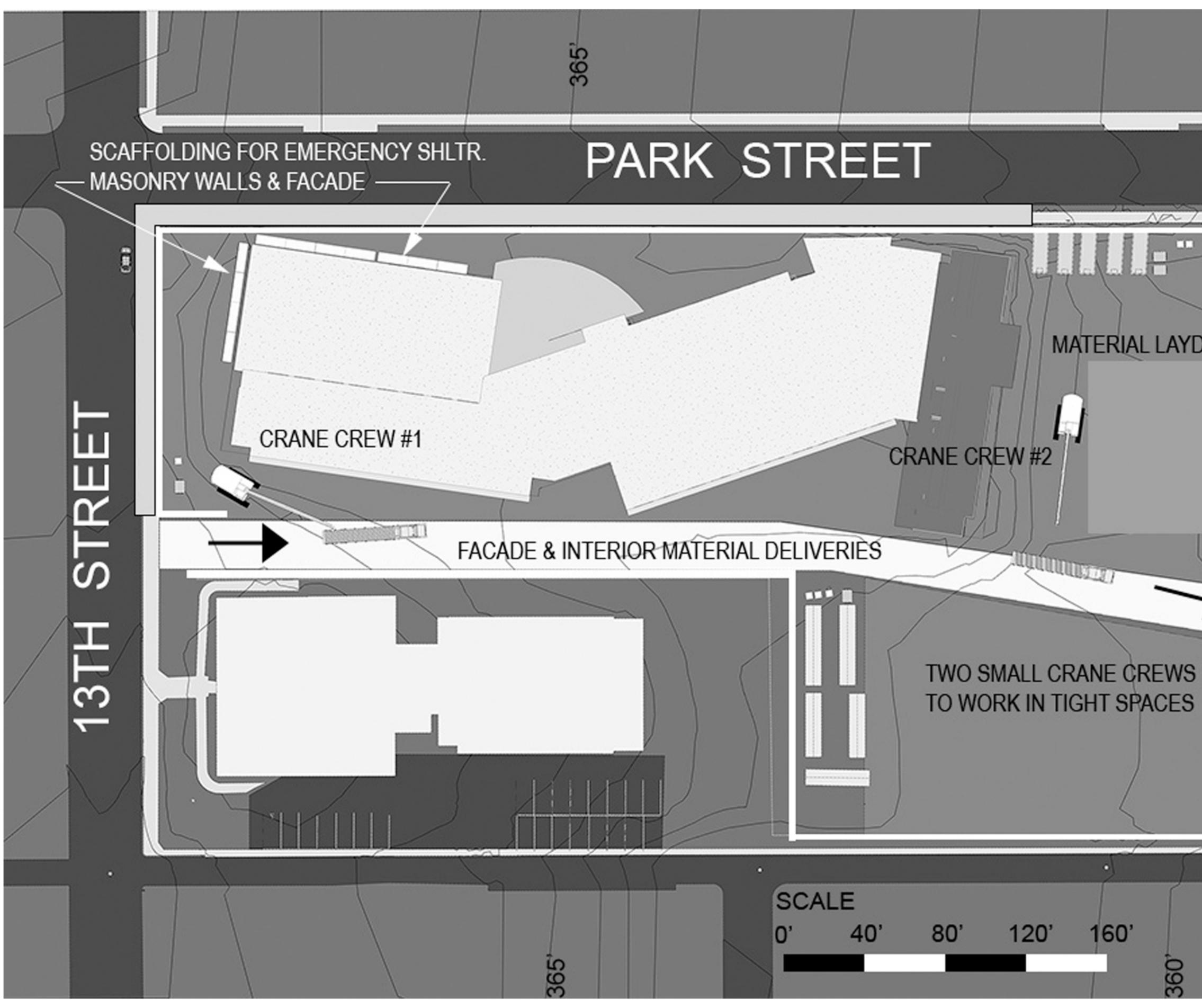
EXCAVATION: April 15, 2013 SAFETY CONCERNS: Open excavation pits, sinkholes, and possible contaminated soil QUALITY CONTROL: Testing of soil for contaminants and limiting the amount of soil being eroded by rain and trailed by vehicles



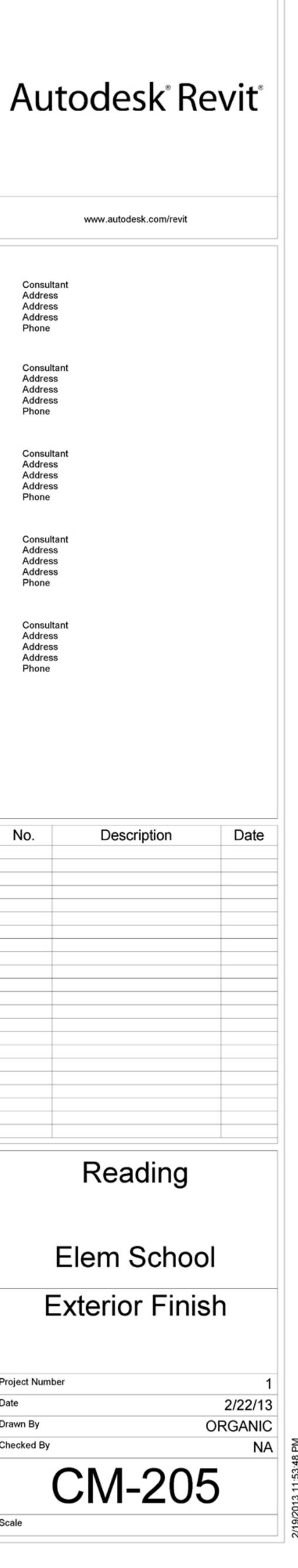
Consultant Address Address Address Phone Consultant 360 Address Address Address Phone Consultant Address Address Address Phone Consultant Address Address Address NA / ps-Phone TOPSOI Consultant Address Address Address Phone RECYCLING/ PILE CONTAINERS No. FILL OR REMOVAL TOPSOIL REMOVED 160' N Project Number 360 Date Drawn By Checked By


Scale

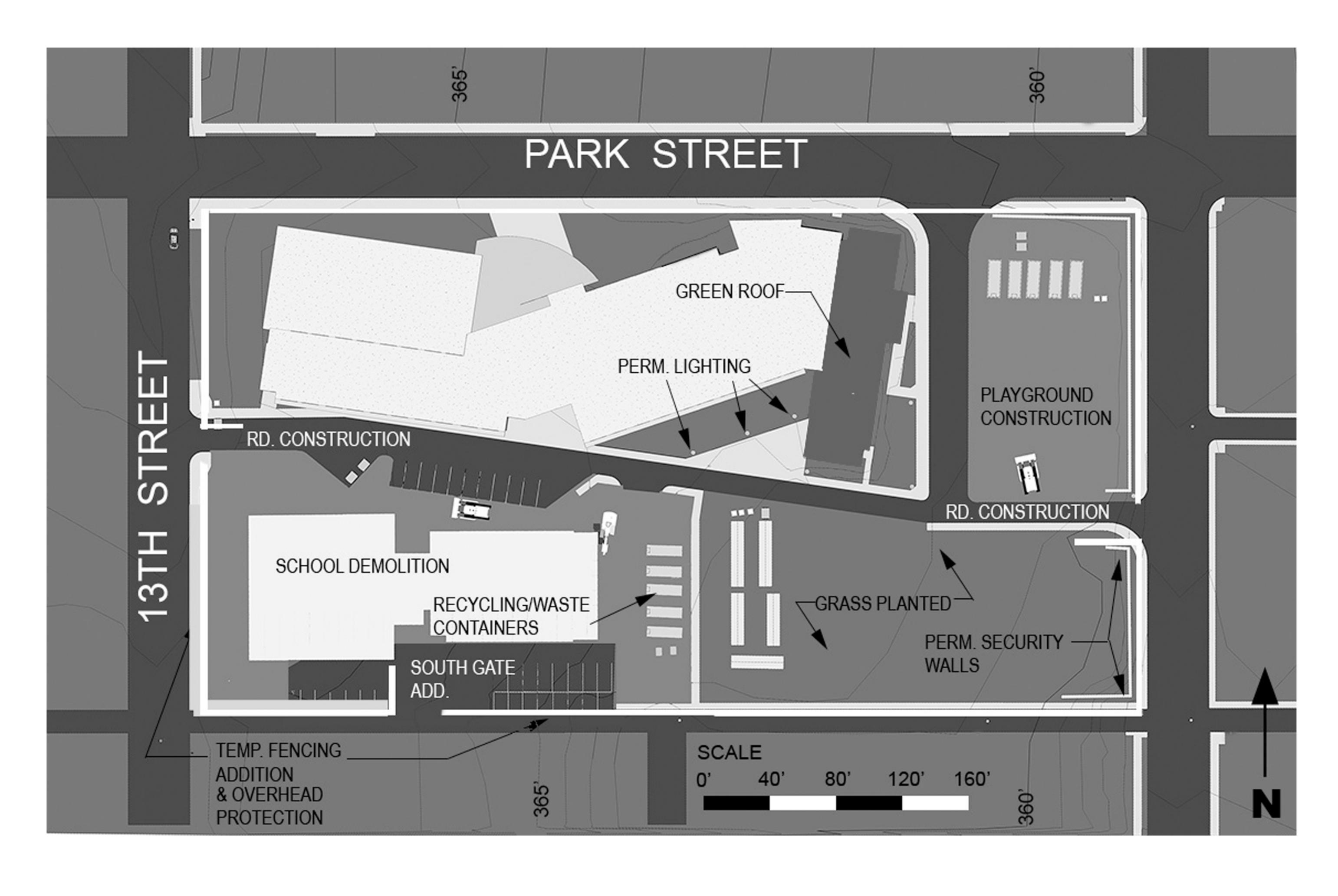
SUPERSTRUCTURE: April 29, 2013 SAFETY CONCERNS: Site congestion, crane swing, and frequent truck deliveries QUALITY CONTROL: Completing sections of the building at a time to phase trades and provide sheltered areas for material storage



Consultant Address Address Address Phone No. Project Number Date Drawn By Checked By


Scale

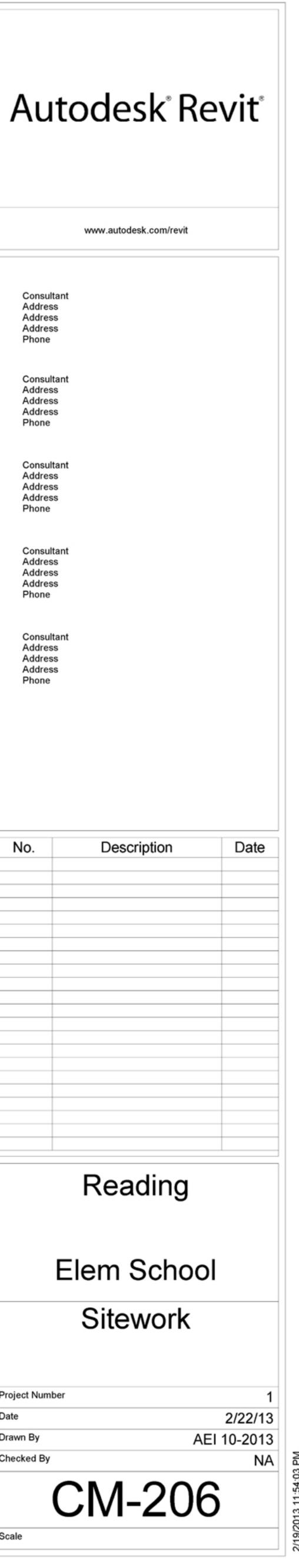
EXTERIOR FINISH: July 1, 2013 SAFETY CONCERNS: Site congestion, scaffolding, and truck deliveries QUALITY CONTROL: Getting the building water tight as soon as possible will help to alleviate some problems associated with weather

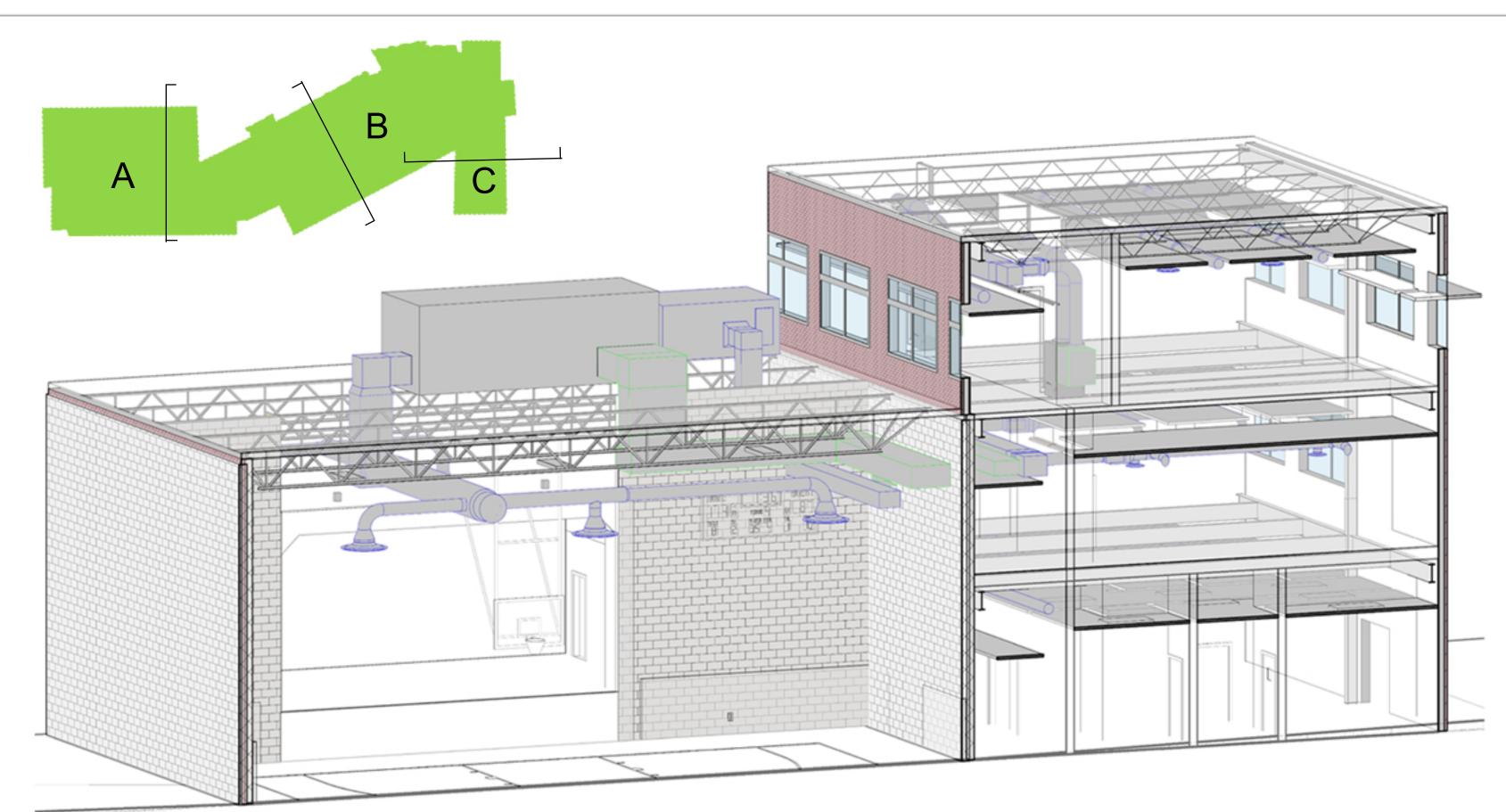


Consultant Address Address Address Phone 360 Consultant Address Address Address Phone Consultant Address Address Address Phone Consultant Address Na / Address ma Address Phone Consultant Address Address Address Phone MATERIAL LAYDOWN No. STORAGE TWO SMALL CRANE CREWS UTILIZED 160 Ň Project Number 360 Date Drawn By Checked By

Scale

SITEWORK: April 14, 2014

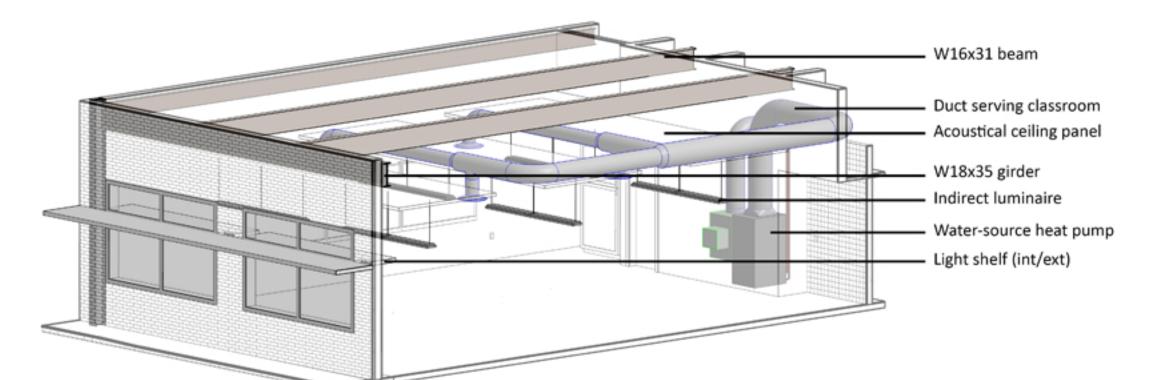



SAFETY CONCERNS: Falling debris and contaminants in demolition materials QUALITY CONTROL: Recycling and salvaging of materials and cleaning up the site in finished areas

Consultant Address Address Address Phone

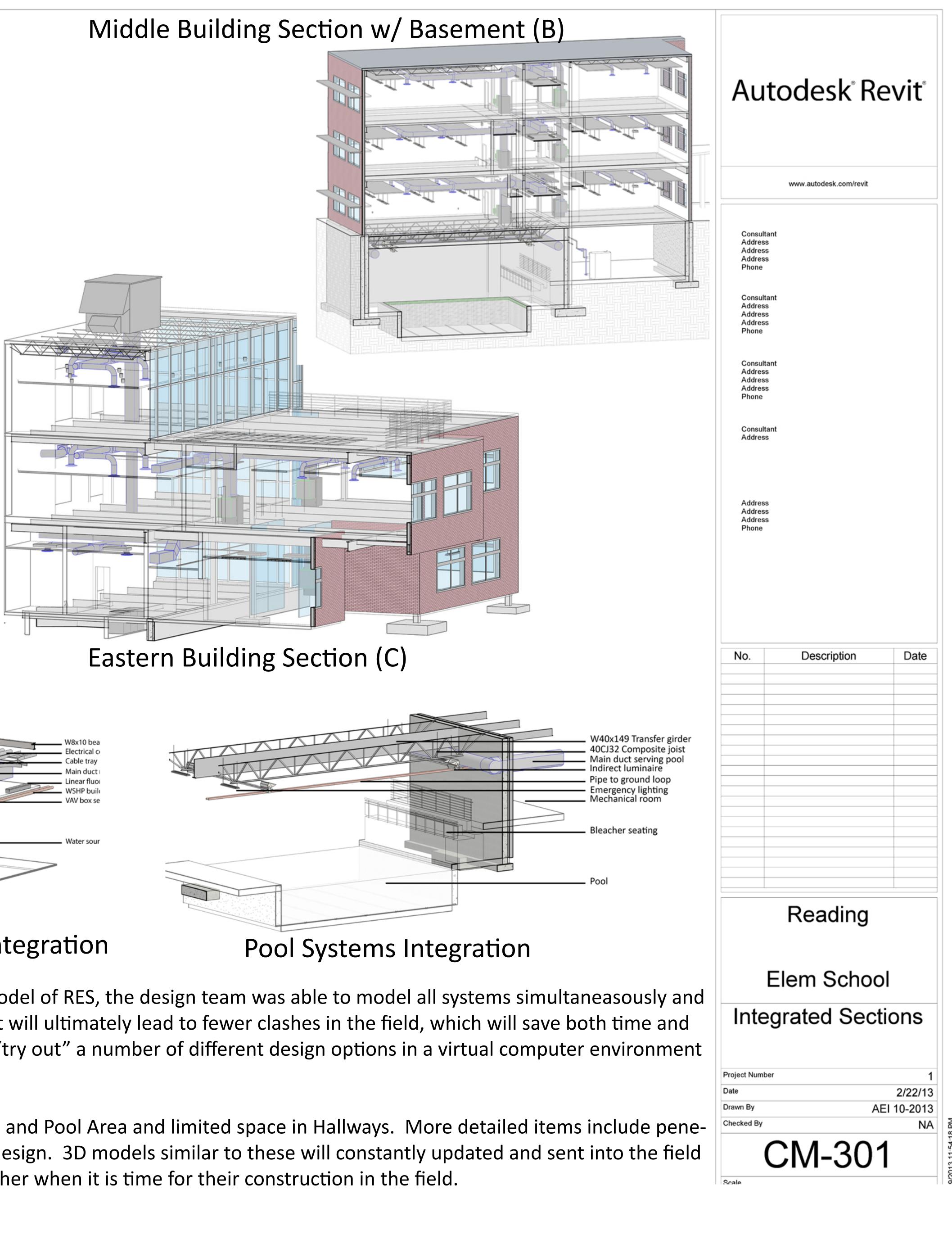
No.	[
	_
	R

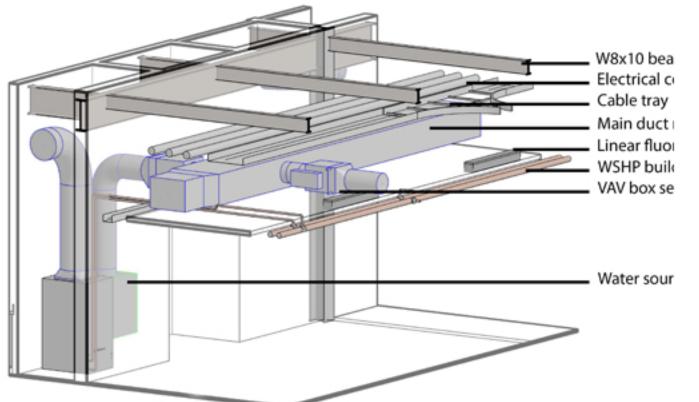
	Eler
	S
Project Num Date	ber
Drawn By	
Checked By	
	CN
Scale	

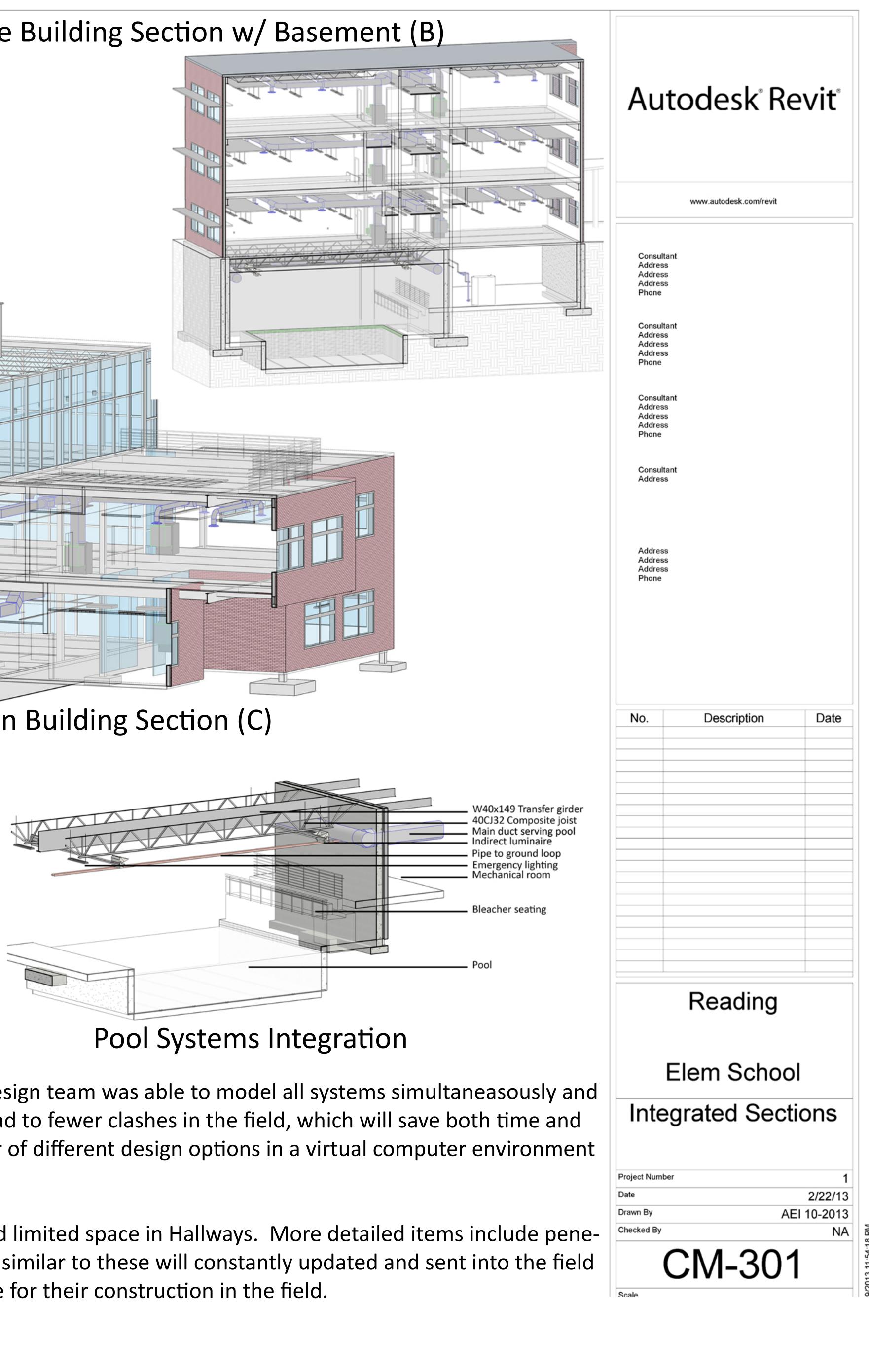


Western Building Section w/ Multipurpose Room (A)

Multupurpose Room Systems Integration




Classroom Systems Integration


Revit is an excellent tool for displaying information in three dimensions. Using a 3D model of RES, the design team was able to model all systems simultaneasously and gain valuable insight into how spaces would look. This is an important asset because it will ultimately lead to fewer clashes in the field, which will save both time and money. Also, the ease with which things can be modeled in Revit allows designers to "try out" a number of different design options in a virtual computer environment before deciding the best one to pursue.

Basic constructability items include dangerous heights in both the Multipurpose Room and Pool Area and limited space in Hallways. More detailed items include penetrations through certain walls, especially the load bearing walls of the proposed pool design. 3D models similar to these will constantly updated and sent into the field to improve speed, quality, and safety. Specific areas of the model will be detailed further when it is time for their construction in the field.

- Energy recovery ventilator
- WSHP rooftop unit
- 40LH16 Bar joist
- Suspended luminaire
- Acoustical treatment

Hallway Systems Integration